Paper:
Adaptive Kernel Quantile Regression for Anomaly Detection
Hiroyuki Moriguchi*, Ichiro Takeuchi**,
Masayuki Karasuyama**, Shin-ichi Horikawa*,
Yoshikatsu Ohta*, Tetsuji Kodama* and Hiroshi Naruse*
* Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
** Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- [1] J. D. Hamilton, “Time series analysis,” Princeton University Press, 1994.
- [2] R. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflations,” Econometrica, Vol.50, pp. 987-1008, 1982.
- [3] R. Koenker and G. Bassett, “Regression quantiles,” Econometrica, Vol.46, No.1, pp. 33-50, 1978.
- [4] I. Takeuchi, Q. V. Le, T. Sears, and A. J. Smola, “Nonparametric quantile estimation,” Journal of Machine Learning Research, Vol.7, pp. 1231-1264, 2006.
- [5] G. Cauwenberghs and T. Poggio, “Incremental and decremental support vector machine learning,” In Advances in Neural Information Processing Systems, Vol.13, pp. 409-415, 2001.
- [6] J. Ma, J. Theiler, and S. Perkins, “Accurate on-line support vector regression,” Neural Computation, Vol.15, No.11, pp. 2683-2703, 2003.
- [7] I. Takeuchi, K. Nomura, and T. Kanamori, “Nonparametric conditional density estimation using piecewise-linear solution path of kernel quantile regression,” Neural Computation, Vol.21, No.2, pp. 533-559, 2009.
- [8] R. Horn and C. R. Johnson, “Matrix analysis,” Cambridge University Press, 1985.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.