Paper:
Rough Sets Based Rule Generation from Data with Categorical and Numerical Values
Hiroshi Sakai*, Kazuhiro Koba*, and Michinori Nakata**
*Department of Mathematics and Computer Aided Science, Faculty of Engineering, Kyushu Institute of Technology
Tobata, Kitakyushu 804-8550, Japan
**Faculty of Management and Information Science, Josai International University
Gumyo, Togane, Chiba 283-8555, Japan
- [1]
Z. Pawlak, “Rough Sets: Theoretical Aspects of Reasoning about Data,” Kluwer Academic Publishers, Dordrecht, 1991.
Z. Pawlak, “Some Issues on Rough Sets,” Transactions on Rough Sets, Springer-Verlag, Vol.1, pp. 1-58, 2004.
J. Komorowski, Z. Pawlak, L. Polkowski, and A. Skowron, “Rough Sets: a tutorial,” Rough Fuzzy Hybridization, Springer, pp. 3-98, 1999.
A. Nakamura, S. Tsumoto, H. Tanaka, and S. Kobayashi, “Rough Set Theory and Its Applications,” Journal of Japanese Society for AI, Vol.11, No.2, pp. 209-215, 1996.
L. Polkowski and A. Skowron (Eds.), “Rough Sets in Knowledge Discovery 1,” Studies in Fuzziness and Soft Computing, Vol.18, Physica-Verlag, 1998.
L. Polkowski and A. Skowron (Eds.), “Rough Sets in Knowledge Discovery 2,” Studies in Fuzziness and Soft Computing, Vol.19, Physica-Verlag, 1998.
“Rough Set Software,” Bulletin of Int'l. Rough Set Society, Vol.2, pp. 15-46, 1998.
H. Sakai and A. Okuma, “Basic Algorithms and Tools for Rough Non-deterministic Information Analysis,” Transactions on Rough Sets, Springer-Verlag, Vol.1, pp. 209-231, 2004.
H. Sakai, “Effective Procedures for Handling Possible Equivalence Relations in Non-deterministic Information Systems,” Fundamenta Informaticae, Vol.48, pp. 343-362, 2001.
H. Sakai and M. Nakata, “Discernibility Functions and Minimal Rules in Non-deterministic Information Systems,” Lecture Notes in AI (RSFDGrC 2005), Springer-Verlag, Vol.3641, pp. 254-264, 2005.
H. Sakai, T. Murai, and M. Nakata, “On a Tool for Rough Non-deterministic Information Analysis and Its Perspective for Handling Numerical Data,” Lecture Notes in AI (MDAI 05), Springer-Verlag, Vol.3558, pp. 203-214, 2005.
T. Murai, G. Resconi, M. Nakata, and Y. Sato, “Operations of Zooming In and Out on Possible Worlds for Semantic Fields,” E. Damiani et al. (Eds.), Knowledge-Based Intelligent Information Engineering Systems and Allied Technologies, IOS Press, pp. 1083-1087, 2002.
T. Murai, G. Resconi, M. Nakata, and Y. Sato, “Granular Reasoning Using Zooming In & Out,” Lecture Notes in Computer Science (RSFDGrC 2003), Springer-Verlag, Vol.2639, pp. 421-424, 2003.
Y. Yao, C. Liau, and N. Zhong, “Granular Computing Based on Rough Sets, Quotient Space Theory, and Belief Functions,” Lecture Notes in AI (ISMIS 2003), Springer-Verlag, Vol.2871, pp. 152-159, 2003.
A. Skowron and C. Rauszer, “The Discernibility Matrices and Functions in Information Systems,” In Intelligent Decision Support – Handbook of Advances and Applications of the Rough Set Theory, Kluwer Academic Publishers, pp. 331-362, 1992.
R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th Very Large Data Base, pp. 487-499, 1994.
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo, “Fast Discovery of Association Rules,” Advances in Knowledge Discovery and Data Mining, pp. 307-328, 1996.
UCI Machine Repository: http://www.ics.uci.edu/verb++mlearn/MLRepository.html.
M. Chmielewski and J. Grzymala-Busse, “Global Discretization of Continuous Attributes as Preprocessing for Machine Learning,” Int'l. Journal of Approximate Reasoning, Vol.15, pp. 319-331, 1996.
J. Grzymala-Busse and J. Stefanowski, “Three Discretization Methods for Rule Induction,” Int'l. Journal of Intelligent Systems, Vol.16, pp. 29-38, 2001.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.