Paper:

# Space Invariant Independent Component Analysis and ENose for Detection of Selective Chemicals in an Unknown Environment

## Tuan A. Duong, Margaret A. Ryan, and Vu A. Duong

Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA 91109

*J. Adv. Comput. Intell. Intell. Inform.*, Vol.11 No.10, pp. 1197-1203, 2007.

- [1] M. A. Ryan, M. L. Homer, M. G. Buehler, K. S. Manatt, F. Zee, and J. Graf, “Monitoring the Air Quality in a Closed Chamber Using an Electronic Nose,” Proc. of the 27th Int. Conf. on Environmental Systems, Society of Automotive Engineers 1997, 97-ES84.
- [2] M. A. Ryan, M. L. Homer, M. G. Buehler, K. S. Manatt, B. Lau, D. Karmon, and S. Jackson, “Monitoring Space Shuttle Air for Selected Contaminants Using an Electronic Nose,” Proc. of the 28th Int. Conf. on Environmental Systems, Society of Automotive Engineers 1998, 98156.
- [3] M. A. Ryan, M. L. Homer, H. Zhou, K. S. Manatt, V. S. Ryan, and S. P. Jackson, “Operation of an Electronic Nose Aboard the Space Shuttle and Directions for Research for a Second Generation Device,” Proc. of the 30th Int. Conf. on Environmental Systems, Society of Automotive Engineers 2000, 00ICES-259.
- [4] “Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants,” National Academy Press: Washington, DC, Vols.1 and 2, 1994.
- [5] J. T. James, T. F. Limero, H. J. Leano, J. F. Boyd, and P. A. Covington, “Volatile Organic Contaminants Found in the Habitable Environment of the Space Shuttle: STS-26 to STS-55.,” Aviation Space Environmental Medicine, Vol.65, No.9, pp. 851-857, 1994.
- [6] D. E. Rumelhart and J. L. McClelland, “Parallel Distributed Processing: Explorations in the Microstructure of Cognition,” Vol.1: Foundation, MIT Press, Cambridge, MA, 1986.
- [7] S. E. Fahlman and C. Lebiere, “The Cascade Correlation learning architecture, Advances in Neural Information Processing Systems II,” D. Touretzky, M. Kaufmann, and S. Mateo (Eds.), CA, pp. 524-532, 1990.
- [8] M. Cohen and S. Grossberg, “Absolute stability of global pattern formation and parallel memory stage by competitive neural networks,” IEEE Trans. Systems, Man, Cybernetics, Vol.SMC-13, pp. 815-826, 1983.
- [9] B. Widrow, “Generalization and information storage in networks of ADALINE neurons,” G. T. Yovitt (Ed.), Self-Organizing Systems, Spartan Books, Washington DC, 1962.
- [10] T. A. Duong and A. R. Stubberud, “Convergence Analysis Of Cascade Error Projection: An Efficient hardware learning algorithm,” International Journal of Neural System, Vol.10, No.3, pp. 199-210, June, 2000.
- [11] J. Herault and C. Jutten, “Space or time adaptive signal processing by neural network models,” J. S. Denker (Ed.), Neural network for computing: AIP Conference proceedings 151, New York, American Institute for Physics, 1986.
- [12] C. Jutten and J. Herault, “Blind separation of the sources, part I: an adaptive algorithm based on neuromimetic architecture,” Signal Processing, Vol.24, pp. 1-10, 1991.
- [13] P. Common, “Independent component Analysis a new concepts?” Signal Processing, Vol.36, Issue 3, pp. 287-314, 1994.
- [14] D.-T. Pham, P. Garrat, and C. Jutten, “Separation of a mixtures of independent sources through a maximum likelihood approach,” EUSIPCO, pp. 771-774, 1992.
- [15] J. Cardoso, “High-order contrast for independent component analysis,” Neural Computation, 1998.
- [16] A. J. Bell and T. J. Sejnowski, “An Information-Maximization Approach to Blind Separation and Blind Deconvolution,” Neural Computation, Vol.7, pp. 1129-1159, 1995.
- [17] V. A. Duong, “Independent Component Analysis for Space-Time and Nonlinear Mixtures,” Ph.D. Thesis UCI, 2004.
- [18] S. I. Amari, “Natural gradient works efficiently in learning,” Neural Computation, 1998.
- [19] A. Bell, “Information Theory, Independent-Component Analysis and Applications, Unsupervised Adaptive Filtering,” S. Haykin (Ed.), Vol.1: Blind Source Separation, Chapter 6, John Wiley and Son Inc., 2000.

This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.