Paper:
Adjustability of Neural Networks with Variant Connection Weights for Obstacle Avoidance in an Intelligent Wheelchair
Toshihiko Yasuda*, Hajime Tanaka*, Kazushi Nakamura**,
and Katsuyuki Tanaka*
*Dept. of Mechanical System Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan
**Dai Nippon Printing Co., Ltd., 1-1-1 Ichigaya, Kagacho, Shinjuku-ku, Tokyo 162-8001, Japan
- [1] D. P. Miller and M. G. Slack, “Design and testing of a lowcost robotic wheelchair prototype,” Autonomous Robotics, Vol.2, pp. 77-88, 1995.
- [2] R. C. Simpson and S. P. Levine, “Adaptive shared control of a smart wheelchair operated by voice control,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 1997, Vol.2, pp. 622-626, 1997.
- [3] H. A. Yanco and J. Gips, “Preliminary investigation of a semiautonomous robotic wheelchair directed through electrodes,” Proc. of Rehabilitation Engineering Society of North America 1997 Annual Conference, pp. 414-416, 1997.
- [4] N. I. Katevas, N.M. Sgouros, S. G. Tzafestas, G. Papakonstantinou, P. Beattie, J. M. Bishop, P. Tsanakas, and D. Koutsouris, “The autonomous mobile robot SENARIO: a sensor-aided intelligent navigation system for powered wheelchair,” IEEE Robotics and Automation Magazine, Vol.4, No.4, pp. 60-70, 1997.
- [5] T. Gomi and A. Griffith, “Developing intelligent wheelchairs for the handicapped,” Lecture Notes in AI; Assistive Technology and Artificial Intelligence, Springer-Verlag Publisher, Vol.1458, pp. 150-178, 1998.
- [6] A. Lankenau and T. Rofer, “A versatile and safe mobility assistant,” IEEE Robotics and Automation Magazine, pp. 29-37, 2001.
- [7] G. Bourhis, O. Horn, O. Habert, and A. Pruski, “An autonomous vehicle for people with motor disabilities,” IEEE Robotics and Automation Magazine, pp. 20-28, 2001.
- [8] H. Kitagawa, T. Kobayashi, T. Beppu, and K. Terashima, “Semi-Autonomous obstacle avoidance of omnidirectional wheelchair by joystick impedance control,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2001, Vol.4, pp. 2148-2153, 2001.
- [9] E. S. Boy, C. L. Teo, and E. Burdet, “Collaborative wheelchair assistant,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2002, Vol.2, pp. 1511-1516, 2002.
- [10] S. P. Kang and J. Katupitiya, “A hand gesture controlled semiautonomous wheelchair,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 2004, Vol.4, pp. 3565-3570, 2004.
- [11] T. Hatase, K. Toda, and O. Matsumoto, “Intelligent wheelchair robot ‘TAO Aicle’,” Journal of Robotics Society of Japan Special issue “Robots at EXPO 2005,” Vol.24, part 2, pp. 18-20, 2006.
- [12] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Trans. Automatic Control, Vol.38, No.5, pp. 700-716, 1993.
- [13] A. Suzuki, T. Narikiyo, H. Duong, and S. Hara, “Trajectory tracking control for non-holonomic dynamic systems with uncertainty,” Trans. of the Society of Instrument and Control Engineers, Vol.37, No.8, pp. 763-769, 2001.
- [14] T. Ohtsuka and A. Kodama, “Automatic code generation system for nonlinear recoding horizon control,” Trans. of the Society of Instrument and Control Engineers, Vol.38, No.7, pp. 617-623, 2002.
- [15] K. Kinjo, E. Uezato, K. Nakazono, and T. Yamamoto, “Regulator design of two-wheel vehicle using neurocontroller optimized by genetic algorithm,” Trans. of the Society of Instrument and Control Engineers, Vol.42, No.9, pp. 1051-1057, 2006.
- [16] T. Yasuda, K. Nakamura, A. Kawahara, and K. Tanaka, “Neural network with variable connection weights for autonomous obstacle avoidance on a prototype of six-wheel type intelligent wheelchair,” Int. Journal of Innovative Computing, Information &Control, Vol.2, No.5, pp. 1165-1177, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.