Paper:
A Hybrid System ASVR/NGARCH Tuned by Quantum-Based Minimization to Improve Forecasting Accuracy
Bao Rong Chang
Department of Computer Science and Information Engineering, National Taitung University, 684 Chunghua Rd., Sec. 1, Taitung City, Taitung, Taiwan
- [1] B. R. Chang and S. F. Tsai, “Adaptive Support Vector Regression,” Proc. of International Computer Symposium, Taipei, Taiwan, pp. 901-907, 2004.
- [2] T. Bellerslve, “Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Econometrics, Vol.31, pp. 307-327, 1986.
- [3] M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum information,” Cambridge University Press, London, ISBN 0521 63503 9, 2000.
- [4] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, “Time Series Analysis: Forecasting & Control,” Prentice-Hall, New Jersey, 1994.
- [5] J. L. Deng, “Control Problems of Grey System,” System and Control Letter, Vol.1, No.5, pp. 288-294, 1982.
- [6] B. R. Chang, “A Study of Non-Periodic Short-Term Random Walk Forecasting Based on RBFNN, ARMA, or SVR-GM(1,1,tau) Approach,” Proc. of IJCNN, pp. 254-259, 2003.
- [7] V. Vapnik, “The Nature of Statistical Learning Theory,” Springer-Verlag, New York, 1995.
- [8] C. Gourieroux, “ARCH Models and Financial Applications,” Springer-Verlag, New York, 1997.
- [9] D. Anguita, S. Ridella, F. Rivieccio, and R. Zunino, “Training Support Vector Machines: a Quantum-Computing Perspective,” Proc. IEEE IJCNN, pp. 1587-1592, 2003.
- [10] R. Fletcher, “Practical Methods of Optimization (2nd Ed.),” Wiley and Sons, New York, 1987.
- [11] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Pro. of the Royal Society, London, A439, pp. 553-558, 1992.
- [12] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search,” Proc. 28th Ann. ACM Symp. Theory of Comp., ACM Press, pp. 212-219, 1996.
- [13] C. Durr and P. Hoyer, “A Quantum Algorithm for Finding the Minimum,”
http://arxiv.org/abs/quant-ph/9607014. - [14] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, “Tight Bounds on Quantum Searching,” Fortschritte Der Physik, 1998.
- [15] V. Vapnik, “The nature of statistical learning theory,” Springer-Verlag, New York, 1995.
- [16] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support Vector Machines,” Cambridge University Press, London, 2000.
- [17] E. Kreyszig, “Advanced Engineering Mathematics,” 8th Edition, Wiley, New York, 1999.
- [18] J. D. Hamilton, “Time Series Analysis,” Princeton University Press, New Jersey, 1994.
- [19] L. Hentschel, “All in the Family: Nesting Symmetric and Asymmetric GARCH Models,” Journal of Financial Economics, Vol.39, pp. 71-104, 1995.
- [20] B. N. Pshenichnyj and S. S. Wilson, “The Linearization Method for Constrained Optimization,” Springer, New York, 1994.
- [21] I. Ono and S. Kobayashi, “A Real-coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distribution Crossover,” Proc. 7th International Conf. on Genetic Algorithms, pp. 246-253, 1997.
- [22] International Stock Price Index, FIBV FOCUS MONTHLY STATISTICS, 2005.
- [23] G. M. Ljung and G. E. P. Box, “On a Measure of Lack of Fit in Time Series Models,” Biometrika, Vol.65, pp. 67-72, 1978.
- [24] Typhoon Moving Trace Inquire, Central Weather Bureau, Taipei, Taiwan, 2005.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.