Paper:
On Fuzzy c-Means for Data with Tolerance
Ryuichi Murata, Yasunori Endo, Hideyuki Haruyama, and Sadaaki Miyamoto
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- [1] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, New York, 1981.
- [2] Y. Endo, “Clustering Algorithm Using Covariance for Fuzzy Data,”In Proc. 1998 International Symposium on Nonlinear Theory and Its Applications, pp. 511-514, 1998.
- [3] Y. Endo and K. Horiuchi, “On Clustering Algorithm for Fuzzy Data,” In Proc. 1997 International Symposium on Nonlinear Theory and Its Applications, pp. 381-384, 1997.
- [4] R.-P. Li and M. Mukaidono, “A maximum entropy approach to fuzzy clustering,” In Proc. of the 4th IEEE Intern. Conf. on Fuzzy Systems (FUZZ-IEEE/IFES’95), pp. 2227-2232, Japan, March, 1995.
- [5] Z.-Q. Liu and S. Miyamoto (eds.), “Soft computing and humancentered machines,” pp. 85-129, Springer-Verlag Tokyo, Japan, 2000.
- [6] S. Miyamoto and M. Mukaidono, “Fuzzy c-means as a regularization and maximum entropy approach,” In Proc. of the 7th International Fuzzy Systems Association World Congress (IFES’97), volume II, pp. 86-92, Prague, June, 1997.
- [7] N. Wu, “The maximum entropy method,” Springer-Verlag, Berlin, 1997.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.