JACIII Vol.10 No.4 pp. 586-593
doi: 10.20965/jaciii.2006.p0586


Approximate Reasoning in Supervised Classification Systems

Hamid Seridi*,**, Herman Akdag**, Rachid Mansouri***,
and Mohamed Nemissi*

*Laboratoire d’Automatique et Informatique de Guelma (LAIG), Université 08 mai 1945 de Guelma, B.P. 401 Guelma 24000, Algeria

**Laboratoire d’Etude et de Recherche en Informatique (LERI), Université de Reims Champagne Ardenne, Rue des Grayères BP1035 51687 Reims Cedex2, France

***Laboratoire de Genie Civil et D’hydraulique (LGCH), Université 08 mai 1945 de Guelma, B.P. 401 Guelma 24000, Algeria

October 24, 2005
January 17, 2006
July 20, 2006
qualitative uncertainty, expert systems, symbolic probability, knowledge representation, multivalued logic

In knowledge-based systems, uncertainty in propositions can be represented by various degrees of belief encoded by numerical or symbolic values. The use of symbolic values is necessary in areas where the exact numerical values associated with a fact are unknown by experts. In this paper we present an expert system of supervised automatic classification based on a symbolic approach. This last is composed of two sub-systems. The first sub-system automatically generates the production rules using training set; the generated rules are accompanied by a symbolic degree of belief which characterizes their classes of memberships. The second is the inference system, which receives in entry the base of rules and the object to classify. Using classical reasoning (Modus Ponens), the inference system provides the membership class of this object with a certain symbolic degree of belief. Methods to evaluate the degree of belief are numerous but they are often tarnished with uncertainty. To appreciate the performances of our symbolic approach, tests are made on the Iris data basis.

Cite this article as:
Hamid Seridi, Herman Akdag, Rachid Mansouri, and
and Mohamed Nemissi, “Approximate Reasoning in Supervised Classification Systems,” J. Adv. Comput. Intell. Intell. Inform., Vol.10, No.4, pp. 586-593, 2006.
Data files:
  1. [1] A. Borgi, J. M. Bazin, and H. Akdag, “Supervised Classification by Automatic Rules Generation,” The Fourth World Congress on Expert Systems, Application of Advanced Information Technologies, Mexico City, pp. 561-568, 1998.
  2. [2] G. Vernazza, “Image Classification By Extended Certainty Factors,” Pattern Recognition, Vol.26, No.11, Pergamon Press Ltd, pp. 1683-1694, 1993.
  3. [3] H. Seridi, and H. Akdag, “A Qualitative Approach for Processing Uncertainty,” In Uncertainty in Intelligent and Information Systems, Edited by B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh in Advances in Fuzzy Systems-Applications and Theory, World Scientific, Vol.20, pp. 46-57, 2000.
  4. [4] H. Seridi, and H. Akdag, “Approximate Reasoning for Processing Uncertainty,” Journal of Advanced Computational Intelligence, Fuji Technology Press Ltd., Japan, Vol.5, No.2, pp. 110-118, April, 2001.
  5. [5] J. Pearl, “Numerical Uncertainty in Expert Systems, Readings in Uncertainty Reasoning,” Edited by G. Shafer, and J. Pearl, Morgan Kaufman publishers, Inc., California, pp. 255-258, 1990.
  6. [6] L. Zadeh, “Fuzzy Sets as a Basis for a Theory of Possibilty,” Fuzzy Sets and Systems, North-Holland Publishing company, Vol.1, pp. 3-28, 1978.
  7. [7] D. Heckermans, “Probabilistic Interpretations for MYCIN’s Certainty Factors,” Uncertainty in Artificial Intelligence, L. N. Kanal, and J. F. Lemmer (Editors), North-Holland, pp. 167-196, 1986.
  8. [8] H. Seridi, H. Akdag, and A. Meddour, “Une approche qualitative sur le traitement de l’incertain: Application au système expert,” Sciences & Technologie, Algérie, No.19, pp. 13-19, juin, 2003.
  9. [9] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” Proceedings of fourteenth International Joint Conference on Artificial Intelligence, Canada, Vol.2, pp. 1137-1145, 1995.
  10. [10] H. Ishibuchi, K. Nozaki, and H. Tanaka, “Distributed representation of fuzzy rules and its application to pattern classification,” Fuzzy Sets and Systems, Vol.52, pp. 21-32, 1992.
  11. [11] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms,” Fuzzy Sets and Systems, North-Holland, Vol.65, pp. 237-253, 1994.
  12. [12] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting Fuzzy If-Then Rules for Classification Problems Using Genetic Algorithms,” IEEE Transactions on Fuzzy Systems, Vol.3, No.3, August, 1995.
  13. [13] K. Nozaki, H. Ishibuchi, and H. Tanaka, “Selecting Fuzzy Rules with Forgetting in Fuzzy Classification Systems,” Proceedings of the Third IEEE International Conference on Fuzzy Systems, Orlando, Vol.1, pp. 18-623, 1994.
  14. [14] H. Ishibuchi, K. Nozaki, and H. Tanaka, “efficient fuzzy partition of pattern space for classification problems,” Fuzzy Sets and Systems, North-Holland, Vol.59, pp. 295-304, 1993.
  15. [15] D. A. Zighed, J. P. Auray, and G. Dura, “SIPINA: Méthode et logiciel,” Editions Alexandre Lacassagne, Mathématiques appliquées, No.2, 1992.
  16. [16] J. R. Quinlan, “Learning efficient classification procedures and their application to chess and games,” R. S. Michalski, J. G. Carbonell et T. M. Mitchell editors, Machine Learning: An Artificial Intelligence Approach, Morgan Kaufman Publishers, Vol.1, pp. 463-482, 1983.
  17. [17] J. R. Quinlan, “Improved Use of Continuous Attributes in C4.5,” Journal of Artificial Intelligence Research 4, pp. 77-90, 1996.
  18. [18] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and regression trees,” Chapman and Hall, 1984.
  19. [19] C. Marsala, “Apprentissage inductif en présence des données imprécises: construction et utilisation d’arbres de décision flous,” Thèse de Doctorat de l’Université Paris 6, janvier, 1998.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jan. 15, 2021