Paper:
Approximate Reasoning in Supervised Classification Systems
Hamid Seridi*,**, Herman Akdag**, Rachid Mansouri***,
and Mohamed Nemissi*
*Laboratoire d’Automatique et Informatique de Guelma (LAIG), Université 08 mai 1945 de Guelma, B.P. 401 Guelma 24000, Algeria
**Laboratoire d’Etude et de Recherche en Informatique (LERI), Université de Reims Champagne Ardenne, Rue des Grayères BP1035 51687 Reims Cedex2, France
***Laboratoire de Genie Civil et D’hydraulique (LGCH), Université 08 mai 1945 de Guelma, B.P. 401 Guelma 24000, Algeria
- [1] A. Borgi, J. M. Bazin, and H. Akdag, “Supervised Classification by Automatic Rules Generation,” The Fourth World Congress on Expert Systems, Application of Advanced Information Technologies, Mexico City, pp. 561-568, 1998.
- [2] G. Vernazza, “Image Classification By Extended Certainty Factors,” Pattern Recognition, Vol.26, No.11, Pergamon Press Ltd, pp. 1683-1694, 1993.
- [3] H. Seridi, and H. Akdag, “A Qualitative Approach for Processing Uncertainty,” In Uncertainty in Intelligent and Information Systems, Edited by B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh in Advances in Fuzzy Systems-Applications and Theory, World Scientific, Vol.20, pp. 46-57, 2000.
- [4] H. Seridi, and H. Akdag, “Approximate Reasoning for Processing Uncertainty,” Journal of Advanced Computational Intelligence, Fuji Technology Press Ltd., Japan, Vol.5, No.2, pp. 110-118, April, 2001.
- [5] J. Pearl, “Numerical Uncertainty in Expert Systems, Readings in Uncertainty Reasoning,” Edited by G. Shafer, and J. Pearl, Morgan Kaufman publishers, Inc., California, pp. 255-258, 1990.
- [6] L. Zadeh, “Fuzzy Sets as a Basis for a Theory of Possibilty,” Fuzzy Sets and Systems, North-Holland Publishing company, Vol.1, pp. 3-28, 1978.
- [7] D. Heckermans, “Probabilistic Interpretations for MYCIN’s Certainty Factors,” Uncertainty in Artificial Intelligence, L. N. Kanal, and J. F. Lemmer (Editors), North-Holland, pp. 167-196, 1986.
- [8] H. Seridi, H. Akdag, and A. Meddour, “Une approche qualitative sur le traitement de l’incertain: Application au système expert,” Sciences & Technologie, Algérie, No.19, pp. 13-19, juin, 2003.
- [9] R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” Proceedings of fourteenth International Joint Conference on Artificial Intelligence, Canada, Vol.2, pp. 1137-1145, 1995.
- [10] H. Ishibuchi, K. Nozaki, and H. Tanaka, “Distributed representation of fuzzy rules and its application to pattern classification,” Fuzzy Sets and Systems, Vol.52, pp. 21-32, 1992.
- [11] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms,” Fuzzy Sets and Systems, North-Holland, Vol.65, pp. 237-253, 1994.
- [12] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting Fuzzy If-Then Rules for Classification Problems Using Genetic Algorithms,” IEEE Transactions on Fuzzy Systems, Vol.3, No.3, August, 1995.
- [13] K. Nozaki, H. Ishibuchi, and H. Tanaka, “Selecting Fuzzy Rules with Forgetting in Fuzzy Classification Systems,” Proceedings of the Third IEEE International Conference on Fuzzy Systems, Orlando, Vol.1, pp. 18-623, 1994.
- [14] H. Ishibuchi, K. Nozaki, and H. Tanaka, “efficient fuzzy partition of pattern space for classification problems,” Fuzzy Sets and Systems, North-Holland, Vol.59, pp. 295-304, 1993.
- [15] D. A. Zighed, J. P. Auray, and G. Dura, “SIPINA: Méthode et logiciel,” Editions Alexandre Lacassagne, Mathématiques appliquées, No.2, 1992.
- [16] J. R. Quinlan, “Learning efficient classification procedures and their application to chess and games,” R. S. Michalski, J. G. Carbonell et T. M. Mitchell editors, Machine Learning: An Artificial Intelligence Approach, Morgan Kaufman Publishers, Vol.1, pp. 463-482, 1983.
- [17] J. R. Quinlan, “Improved Use of Continuous Attributes in C4.5,” Journal of Artificial Intelligence Research 4, pp. 77-90, 1996.
- [18] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and regression trees,” Chapman and Hall, 1984.
- [19] C. Marsala, “Apprentissage inductif en présence des données imprécises: construction et utilisation d’arbres de décision flous,” Thèse de Doctorat de l’Université Paris 6, janvier, 1998.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.