Paper:
A Proposal of Visualization Method for Interpretable Fuzzy Model on Fusion Axes
Kosuke Yamamoto, Tomohiro Yoshikawa, and Takeshi Furuhashi
Department of Computational Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- [1] J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, “Interpretability Issues in Fuzzy Modeling,” Springer, 2003.
- [2] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On Fuzzy Modeling Using Fuzzy Neural Networks with the Back-Propagation Algorithm,” IEEE Trans. on Neural Networks, Vol.3, No.5, pp. 801-806, 1992.
- [3] M. Sugeno, and T. Yasukawa, “A Fuzzy Logic based Approach to Qualitative Modeling,” IEEE Trans. on Fuzzy System, Vol.1, No.1, pp. 7-31, 1993.
- [4] D. Tikk, G. Biró, T. D. Gedeon, L. T. Kóczy, and J. D. Yang, “Improvements and Critique on Sugeno’s and Yasukawa’s Qualitative Modeling,” IEEE Trans. on Fuzzy Systems, Vol.10, No.5, pp. 596-606, 2002.
- [5] M. Bikdash, “A highly interpretable form of Sugeno inference systems,” IEEE Trans. on Fuzzy Systems, Vol.7 No.6, pp. 686-696, 1999.
- [6] A. K. Jain, R. Duin, and J. Mao, “Statistical Pattern Recognition: A Review,” IEEE Trans. on PAMI, Vol.22, No.1, pp. 4-37, 2000.
- [7] K. Yamamoto, T. Yoshikawa, and T. Furuhashi, “A Proposal of Fuzzy Modeling on Fusion Axes Considering the Data Structure,” FUZZ-IEEE 2003, pp. 348-353, 2003.
- [8] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum, New York, 1981.
- [9] S. Miyamoto, and M. Mukaidono, “Fuzzy C-means as a Regularization and Maximum Entropy Approach,” IFSA’97, Vol.2, pp. 86-92, 1997.
- [10] G. E. P. Box, and G. M. Jenkins, “Time Series Analysis,” Forecasting and Control. San Francisco, CA, Holden Day, 1970.
- [11] S. Akaho, “EM Algorithm – Application to Clustering and Recent Development,” Journal of Japan Society of Fuzzy Theory and Systems, Vol.12, No.5, pp. 594-602, 2000 (In Japanese).
- [12] D. Suizu, and S. Miyamoto, “Fuzzy c-Means Clustering using Mapping into High Dimensional Spaces,” Proc. of the 18th Fuzzy System Symposium, pp. 123-126, 2002 (In Japanese).
- [13] E. Kim, M. Park, S. Kim, and M. Park, “A Transformed Input-Domain Approach to Fuzzy Modeling,” IEEE Trans. on Fuzzy Systems, Vol.6, No.4, pp. 596-605, 1998.
- [14] R. J. Hathaway, and J. C. Bezdek, “Switching Regression Models and Fuzzy Clustering,” IEEE Trans. on Fuzzy Systems, Vol.1, No.3, 1993.
- [15] Y. Yam, P. Baranyi, and C. T. Yang, “Reduction of Fuzzy Rule Base Via Singular Value Decomposition,” IEEE Trans. of Fuzzy System, Vol.7, No.2, pp. 120-132, 1999.
- [16] A. Hyvärinen, and E. Oja, “Independent Component Analysis: A Tutorial,”
http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb. - [17] T. Kohonen, “Self Organizing Map,” Heidelberg, Springer, 1995.
- [18] T. A. Runkler, “Fuzzy Nonlinear Projection,” FUZZ-IEEE 2003, pp. 863-868, 2003.
- [19] D. E. Gustafson, and W. C. Kessel, “Fuzzy Clustering with a Fuzzy Covariance Matrix,” Proc. IEEE CDC, pp. 761-766, 1979.
- [20] Y. Morii, T. Furuhashi, K. Morikawa, and H. Itani, “A Study on Skill Acquisition from Teaching Information by Mobile Robot,” Proc. of IEEE Int. Symposium on Computational Intelligence in Robotics and Automation (CIRA2003), pp. 753-757, 2003.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.