JACIII Vol.8 No.4 pp. 356-361
doi: 10.20965/jaciii.2004.p0356


Co-Evolution of Fuzzy Controller for the Mobile Robot Control

Kwang-Sub Byun, Chang-Hyun Park, and Kwee-Bo Sim

School of Electrical and Electronics Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea

September 25, 2003
March 29, 2004
July 20, 2004
co-evolution, fuzzy controller, mobile robot control, modified Nash GA

In this paper, we design the fuzzy rules using a modified Nash Genetic Algorithm. Fuzzy rules consist of antecedents and consequents. Because this paper uses the simplified method of Sugeno for the fuzzy inference engine, consequents have not membership functions but constants. Therefore, each fuzzy rule in this paper consists of a membership function in the antecedent and a constant value in the consequent. The main problem in fuzzy systems is how to design the fuzzy rule base. Modified Nash GA coevolves membership functions and parameters in consequents of fuzzy rules. We demonstrate this co-evolutionary algorithm and apply to the design of the fuzzy controller for a mobile robot. From the result of simulation, we compare modified Nash GA with the other co-evolution algorithms and verify the efficacy of this algorithm.

Cite this article as:
Kwang-Sub Byun, Chang-Hyun Park, and Kwee-Bo Sim, “Co-Evolution of Fuzzy Controller for the Mobile Robot Control,” J. Adv. Comput. Intell. Intell. Inform., Vol.8, No.4, pp. 356-361, 2004.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 19, 2021