Paper:
Views over last 60 days: 683
Indexing Visual Features Using a Hybrid Neural Network
Jesse S. Jin*, Henry C. Wang* and Tom Gedeon**
*Department of Computer Science, University of Sydney NSW 2006, Australia
**School of Information Technology, Murdoch University WA, Australia
Received:October 19, 2000Accepted:November 15, 2000Published:November 20, 2000
Keywords:Visual indexing, Similarity search, High dimensional space, Surrogate coding
Abstract
Indexing and retrieving visual information is an important issue in multimedia development. It involves handling high dimensional vectors. Current tree-based high dimensional index structures, such as R-tree, SS+-tree, TV-tree, etc, have the similar low bound to the one-dimensional comparison-based search methods. It is far from being practical in the multimedia area. We propose a fast indexing method using surrogate coding. It possesses many good properties such as preserving similarity ranking and being fast in retrieval. It also preserves a clustered space and is easy to maintain.
Cite this article as:J. Jin, H. Wang, and T. Gedeon, “Indexing Visual Features Using a Hybrid Neural Network,” J. Adv. Comput. Intell. Intell. Inform., Vol.4 No.6, pp. 412-416, 2000.Data files: