Paper:
Views over last 60 days: 603
Fuzzy Control of Back-Propagation Training
Michael Negnevitsky and Martin J. Ringrose
School of Engineering, University of Tasmania,
GPO Box 252-65 Hobart, Tasmania 7001 Australia
Received:October 19, 2000Accepted:November 15, 2000Published:November 20, 2000
Keywords:Neural network, Back-propagation, Fuzzy controller
Abstract
A fuzzy logic controller for updating training parameters in the error back-propagation algorithm is presented. The controller is based on heuristic rules for speeding up the convergence of training process, incorporating both learning rate and momentum constant changes.
Cite this article as:M. Negnevitsky and M. Ringrose, “Fuzzy Control of Back-Propagation Training,” J. Adv. Comput. Intell. Intell. Inform., Vol.4 No.6, pp. 408-411, 2000.Data files: