single-au.php

IJAT Vol.10 No.6 pp. 934-940
doi: 10.20965/ijat.2016.p0934
(2016)

Paper:

Effect of Different Solvents on Cu Micropatterns Formed via Femtosecond Laser Reduction Patterning

Mizue Mizoshiri, Shun Arakane, Junpei Sakurai, and Seiichi Hata

Nagoya University
Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan

Corresponding author,

Received:
May 31, 2016
Accepted:
August 3, 2016
Published:
November 4, 2016
Keywords:
femtosecond laser, CuO nanoparticles, reduction, solvent, micro-temperature sensor
Abstract
We investigated the effect of different solvents on the Cu micropatterns formed via femtosecond laser reduction patterning. Solvents such as ethylene glycol, 2-propanol, and glycerol were mixed with CuO nanoparticles and polyvinylpyrrolidone. The degree of reduction and the resistivity of the fabricated micropatterns depended on the solvent. Glycerol was the most effective reducing agent. This solution was used to fabricate Cu/Cu2O composite micro-temperature sensors. Cu-rich electrodes and Cu2O-rich sensors were selectively formed by controlling the laser scanning speed at 5 mm/s and 0.5 mm/s, respectively, when the pulse energy was 0.53 nJ. The temperature sensor exhibited a negative temperature coefficient of the resistance, which was consistent with the value for Cu2O.
Cite this article as:
M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Effect of Different Solvents on Cu Micropatterns Formed via Femtosecond Laser Reduction Patterning,” Int. J. Automation Technol., Vol.10 No.6, pp. 934-940, 2016.
Data files:
References
  1. [1] Y. P. Kathuria, “Microstructuring by selective laser sintering of metallic powder,” Surface and Coatings Technology, Vol.116-119, pp. 643-647, 1999.
  2. [2] Y. Tang, H. T. Loh, Y. S. Wong, J. Y. H. Fuh, L. Lu, and X. Wang, “Direct laser sintering of a copper-based alloy for creating three-dimensional metal parts,” J. Mater. Process. Technol., Vol.140, pp. 368-372, 2003.
  3. [3] A. Simchi, F. Petzoldt, and H. Pohl, “On the development of direct metal laser sintering for rapid tooling,” J. Mater. Process. Technol., Vol.141, pp. 319-328, 2003.
  4. [4] A. Takaichi, Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi, and T. Hanawa, “Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications,” J. Mech. Behav. Biomed. Mater., Vol.21, pp. 67-76, 2013.
  5. [5] T. Yoneyama and H. Kagawa, “Fabrication of Cooling Channels in the Injection Molding by Laser Metal Sintering,” Int. J. Automation Technol., Vol.2, pp. 162-167, 2008.
  6. [6] T. Nakamoto, N. Shirakawam, Y. Miyata, T. Sone, and H. Inui, “Selective Laser Sintering and Subsequent Gas Nitrocarburizing of Low Carbon Steel Powder,” Int. J. Automation Technol., Vol.2, pp. 168-174, 2008.
  7. [7] J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, “Conductor microstructures by laser curing of printed gold nanoparticle ink,” Appl. Phys. Lett., Vol.84, pp. 801-803, 2004.
  8. [8] S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, and S. H. Ko, “Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink,” ACS Nano., Vol.7, pp. 5024-5031, 2013.
  9. [9] J. S. Kang, J. Ryu, H. S. Kim, and H. T. Hahn, “Sintering of Inkjet-Printed Silver Nanoparticles at Room Temperature Using Intense Pulsed Light,” J. Electron. Mater., Vol.40, pp. 2268-2277, 2011.
  10. [10] H. J. Hwang, W. H. Chung, and H. -S. Kim “In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,” Nanotechnology, Vol.23, art. No.485205, 2012.
  11. [11] K. Woo, D. Kim, J. S. Kim, S. Lim, and J. Moon, “Ink-Jet Printing of Cu-Ag-Based Highly Conductive Tracks on a Transparent Substrate,” Langmuir, Vol.25, pp. 429-433, 2009.
  12. [12] B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-Step Fabrication of Copper Electrode by Laser-Induced Direct Local Reduction and Agglomeration of Copper Oxide Nanoparticle,” J. Phys. Chem. C, Vol.115, pp. 23664-23670, 2011.
  13. [13] D. Lee, D. Paeng, H. K. Park, and C. P. Grigoropoulo, “Vacuum-Free, Maskless Patterning of Ni Electrodes by Laser Reductive Sintering of NiO Nanoparticle Ink and Its Application to Transparent Conductors,” ACS Nano, Vol.8, pp. 9807-9814, 2014.
  14. [14] D. Paeng, D. Lee, J. Yeo, J.-H. Yoo, F. I. Allen, E. Kim, H. So, H. K. Park, A. M. Minor, and C. P. Grigoropoulos, “Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions,” J. Phys. Chem. C, Vol.119, pp. 6363-6372, 2015.
  15. [15] F. Paglia, D. Vak, J. van Embdem, A. S. R. Chesman, A. Martucci, J. J. Jasieniak, and E. D. Gaspera, “Photonic Sintering of Copper through the Controlled Reduction of Printed CuO Nanocrystals,” ACS Appl. Mater. Interfaces., Vol.7, pp. 25473-25478, 2015.
  16. [16] H. Lee and M. Yang, “Effect of solvent and PVP on electrode conductivity in laser-induced reduction process,” J. Appl. Phys. A. Vol.119, pp. 317-323, 2015.
  17. [17] S. Arakane, M. Mizoshiri, and S. Hata, “Direct patterning of Cu microstructures using femtosecond laser-induced CuO nanoparticle reduction,” Jpn. J. Appl. Phys., Vol.54, art. No.06FP07, 2015.
  18. [18] M. Mizoshiri, S. Arakane, J. Sakurai, and S. Hata, “Direct writing of Cu-based micro-temperature detectors using femtosecond laser reduction of CuO nanoparticles,” Appl. Phys. Express, Vol.9, art. No.036701, 2016.
  19. [19] M. Mizoshiri, Y. Ito, S. Arakane, J. Sakurai, and S. Hata, “Direct fabrication of Cu/Cu2O composite micro-temperature sensor using femtosecond laser reduction patterning,” Jpn. J. Appl. Phys., Vol.55, art. No.06GP05, 2016.
  20. [20] S. Xiao, L. Che, X. Li, and Y. Wang, “A cost-effective flexible MEMS technique for temperature sensing,” Microelectron. J., Vol.38, pp. 360-364, 2007.
  21. [21] A. Rydosz, “Amorphous and Nanocrystalline Magnetron Sputtered CuO Thin Films Deposited on Low Temperature Cofired Ceramics Substrates for Gas Sensor Applications,” IEEE Sens. J., Vol.14, pp. 1600-1607, 2014.
  22. [22] E. Comini, G. Sberveglieri, D. Barreca, C. Sada, D. Barreca, A. Gasparotto, C. Maccato, and E. Tondello “Chemical Vapor Deposition of Cu2O and CuO nanosystems for innovative gas sensors,” IEEE Sensors 2009 Conf., pp. 111-113, 2009.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024