Research Paper:
Design of an Optical Head with Two Phase-Shifted Interference Signals for Direction Detection of Small Displacement in an Absolute Surface Encoder
Ryo Sato , Tao Liu, Satoru Maehara, Ryota Okimura, Hiraku Matsukuma , and Wei Gao
Department of Finemechanics, School of Engineering, Tohoku University
6-6-01 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
Corresponding author
This paper presents the design and construction of a new optical head with two phase-shifted interference signals in an absolute surface encoder by using a mode-locked femtosecond laser. A series of discrete absolute positions of the scale grating is obtained from a series of peak wavelengths of the spectrum of the +1st- or -1st-order diffracted beam. The two beams at a specific wavelength λi interfere with each other to generate an incremental interference signal for high-resolution displacement measurement over a small interpolation range around the corresponding discrete absolute position xi. In the previous design of the optical head, the two beams were guided by optical fibers into a fiber coupler for the interference. This fiber optics design was simple and stable but could not identify the moving direction of small displacement within each interpolation range because only one interferential signal could be generated. The aim of this study is to develop a new design of the optical head, where two interference signals with a phase difference of π/2 are generated. For this purpose, free-space optics, instead of fiber optics, is adopted in the new optical head. Experiments are conducted to confirm the generation of the two phase-shifted interference signals. A Lissajous figure is plotted to verify the phase difference between the two signals.
- [1] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement Technologies for Precision Positioning,” CIRP Ann., Vol.64, No.2, pp. 773-796, 2015. https://doi.org/10.1016/j.cirp.2015.05.009
- [2] F. Z. Fang, X. D. Zhang, W. Gao, Y. B. Guo, G. Byrne, and H. N. Hansen, “Nanomanufacturing—Perspective and Applications,” CIRP Ann., Vol.66, No.2, pp. 683-705, 2017. https://doi.org/10.1016/j.cirp.2017.05.004
- [3] R. Schienbein, F. Fern, R. Theska, S. Supreeti, R. Füßl, and E. Manske, “Fundamental Investigations in the Design of Five-Axis Nanopositioning Machines for Measurement and Fabrication Purposes,” Nanomanuf. Metrol., Vol.4, No.3, pp. 156-164, 2021. https://doi.org/10.1007/s41871-021-00102-w
- [4] W. Gao, H. Haitjema, F. Z. Fang, R. K. Leach, C. F. Cheung, E. Savio, and J. M. Linares, “On-Machine and In-Process Surface Metrology for Precision Manufacturing,” CIRP Ann., Vol.68, No.2, pp. 843-866, 2019. https://doi.org/10.1016/j.cirp.2019.05.005
- [5] Y. Shimizu, L.-C. Chen, D. W. Kim, X. Chen, X. Li, and H. Matsukuma, “An Insight into Optical Metrology in Manufacturing,” Meas. Sci. Technol., Vol.32, No.4, Article No.042003, 2020. https://doi.org/10.1088/1361-6501/abc578
- [6] W. Gao and Y. Shimizu, “Optical Metrology for Precision Engineering,” De Gruyter, 2022. https://doi.org/10.1515/9783110542363
- [7] G. Dai, K. Hahm, L. Sebastian, and M. Heidelmann, “Comparison of EUV Photomask Metrology Between CD-AFM and TEM,” Nanomanuf. Metrol., Vol.5, No.2, pp. 91-100, 2022. https://doi.org/10.1007/s41871-022-00124-y
- [8] Y. Tomita, E. Kojima, S. Kawachi, Y. Koyanagawa, and S. Ootsuka, “Development and Applications of Sumitomo Precision Stage Technologies for FPD Process,” J. Jpn. Soc. Precis. Eng., Vol.78, No.2, pp. 117-121, 2012 (in Japanese). https://doi.org/10.2493/jjspe.78.117
- [9] S.-K. Kuo and C.-H. Menq, “Modeling and Control of a Six-Axis Precision Motion Control Stage,” IEEE/ASME Trans. Mechatron., Vol.10, No.1, pp. 50-59, 2005. https://doi.org/10.1109/TMECH.2004.842219
- [10] W. Gao, S. Ibaraki, M. A. Donmez, D. Kono, J. R. R. Mayer, Y.-L. Chen, K. Szipka, A. Archenti, J.-M. Linares, and N. Suzuki, “Machine Tool Calibration: Measurement, Modeling, and Compensation of Machine Tool Errors,” Int. J. Mach. Tools Manuf., Vol.187, Article No.104017, 2023. https://doi.org/10.1016/j.ijmachtools.2023.104017
- [11] H. Oozeki, M. Ogihara, H. Sakai, Y. Kuriyama, and H. Masuda, “Examination About Reduction of the Uncertainty by Interpolation Based on Two Phases Sine Wave of a Laser Interferometer,” J. Jpn. Soc. Precis. Eng., Vol.69, No.9, pp. 1296-1300, 2003 (in Japanese). https://doi.org/10.2493/jjspe.69.1296
- [12] H. Kunzmann, T. Pfeifer, and J. Flügge, “Scales vs. Laser Interferometers Performance and Comparison of Two Measuring Systems,” CIRP Ann., Vol.42, No.2, pp. 753-767, 1993. https://doi.org/10.1016/S0007-8506(07)62538-4
- [13] K. Erkorkmaz, J. M. Gorniak, and D. J. Gordon, “Precision Machine Tool X–Y Stage Utilizing a Planar Air Bearing Arrangement,” CIRP Ann., Vol.59, No.1, pp. 425-428, 2010. https://doi.org/10.1016/j.cirp.2010.03.086
- [14] H.-L. Hsieh, J.-C. Chen, G. Lerondel, and J.-Y. Lee, “Two-Dimensional Displacement Measurement by Quasi-Common-Optical-Path Heterodyne Grating Interferometer,” Opt. Express, Vol.19, No.10, pp. 9770-9782, 2011. https://doi.org/10.1364/OE.19.009770
- [15] G. Berkovic and E. Shafir, “Optical Methods for Distance and Displacement Measurements,” Adv. Opt. Photonics, Vol.4, No.4, pp. 441-471, 2012. https://doi.org/10.1364/AOP.4.000441
- [16] W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of Multi-Degree-of-Freedom Error Motions of a Precision Linear Air-Bearing Stage,” Precis. Eng., Vol.30, No.1, pp. 96-103, 2006. https://doi.org/10.1016/j.precisioneng.2005.06.003
- [17] A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A Sub-Nanometric Three-Axis Surface Encoder with Short-Period Planar Gratings for Stage Motion Measurement,” Precis. Eng., Vol.36, No.4, pp. 576-585, 2012. https://doi.org/10.1016/j.precisioneng.2012.04.005
- [18] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A Six-Degree-of-Freedom Surface Encoder for Precision Positioning of a Planar Motion Stage,” Precis. Eng., Vol.37, No.3, pp. 771-781, 2013. https://doi.org/10.1016/j.precisioneng.2013.03.005
- [19] K.-C. Fan and M.-J. Chen, “A 6-Degree-of-Freedom Measurement System for the Accuracy of X-Y Stages,” Precis. Eng., Vol.24, No.1, pp. 15-23, 2000. https://doi.org/10.1016/S0141-6359(99)00021-5
- [20] H. Matsukuma, R. Ishizuka, M. Furuta, X. Li, Y. Shimizu, and W. Gao, “Reduction in Cross-Talk Errors in a Six-Degree-of-Freedom Surface Encoder,” Nanomanuf. Metrol., Vol.2, No.2, pp. 111-123, 2019. https://doi.org/10.1007/s41871-019-00039-1
- [21] Y. Shimizu, H. Matsukuma, and W. Gao, “Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors,” Sensors, Vol.19, No.23, Article No.5289, 2019. https://doi.org/10.3390/s19235289
- [22] X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of Scale Gratings for Surface Encoders by Using Laser Interference Lithography with 405 nm Laser Diodes,” Int. J. Precis. Eng. Manuf., Vol.14, No.11, pp. 1979-1988, 2013. https://doi.org/10.1007/s12541-013-0269-6
- [23] Y. Shimizu, K. Mano, K. Zhang, H. Matsukuma, and W. Gao, “Accurate Polarization Control in Nonorthogonal Two-Axis Lloyd’s Mirror Interferometer for Fabrication of Two-Dimensional Scale Gratings,” Opt. Eng., Vol.58, No.9, Article No.092611, 2019. https://doi.org/10.1117/1.OE.58.9.092611
- [24] Y. Shimizu, R. Ishizuka, K. Mano, Y. Kanda, H. Matsukuma, and W. Gao, “An Absolute Surface Encoder with a Planar Scale Grating of Variable Periods,” Precis. Eng., Vol.67, pp. 36-47, 2021. https://doi.org/10.1016/j.precisioneng.2020.09.007
- [25] X. Xiong, C. Yin, L. Quan, R. Sato, H. Matsukuma, Y. Shimizu, H. Tamiya, and W. Gao, “Self-Calibration of a Large-Scale Variable-Line-Spacing Grating for an Absolute Optical Encoder by Differencing Spatially Shifted Phase Maps from a Fizeau Interferometer,” Sensors, Vol.22, No.23, Article No.9348, 2022. https://doi.org/10.3390/s22239348
- [26] E. Hecht, “Optics,” 5th Edition, Pearson, 2015.
- [27] A. Kimura, W. Gao, Y. Arai, and Z. Lijiang, “Design and Construction of a Two-Degree-of-Freedom Linear Encoder for Nanometric Measurement of Stage Position and Straightness,” Precis. Eng., Vol.34, No.1, pp. 145-155, 2010. https://doi.org/10.1016/j.precisioneng.2009.05.008
- [28] T. Kubota, M. Nara, and T. Yoshino, “Interferometer for Measuring Displacement and Distance,” Opt. Lett., Vol.12, No.5, pp. 310-312, 1987. https://doi.org/10.1364/OL.12.000310
- [29] A. Teimel, “Technology and Applications of Grating Interferometers in High-Precision Measurement,” Precis. Eng., Vol.14, No.3, pp. 147-154, 1992. https://doi.org/10.1016/0141-6359(92)90003-F
- [30] I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and Precise Absolute Distance Measurements at Long Range,” Nat. Photonics, Vol.3, No.6, pp. 351-356, 2009. https://doi.org/10.1038/nphoton.2009.94
- [31] S. Han, Y.-J. Kim, and S.-W. Kim, “Parallel Determination of Absolute Distances to Multiple Targets by Time-of-Flight Measurement Using Femtosecond Light Pulses,” Opt. Express, Vol.23, No.20, pp. 25874-25882, 2015. https://doi.org/10.1364/OE.23.025874
- [32] A. Asahara, A. Nishiyama, S. Yoshida, K. Kondo, Y. Nakajima, and K. Minoshima, “Dual-Comb Spectroscopy for Rapid Characterization of Complex Optical Properties of Solids,” Opt. Lett., Vol.41, No.21, pp. 4971-4974, 2016. https://doi.org/10.1364/OL.41.004971
- [33] H. Matsukuma, K. Ikeda, R. Sato, and W. Gao, “Autocollimation Employing Optical Frequency Comb,” Proc. SPIE, Vol.12607, Opt. Technol. Meas. Ind. Appl. Conf., Article No.1260704, 2023. https://doi.org/10.1117/12.3005523
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.