single-au.php

IJAT Vol.18 No.2 pp. 249-256
doi: 10.20965/ijat.2024.p0249
(2024)

Research Paper:

Design of an Optical Head with Two Phase-Shifted Interference Signals for Direction Detection of Small Displacement in an Absolute Surface Encoder

Ryo Sato ORCID Icon, Tao Liu, Satoru Maehara, Ryota Okimura, Hiraku Matsukuma ORCID Icon, and Wei Gao ORCID Icon

Department of Finemechanics, School of Engineering, Tohoku University
6-6-01 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Corresponding author

Received:
May 31, 2023
Accepted:
January 15, 2024
Published:
March 5, 2024
Keywords:
absolute encoder, surface encoder, variable line space grating, mode-locked femtosecond laser
Abstract

This paper presents the design and construction of a new optical head with two phase-shifted interference signals in an absolute surface encoder by using a mode-locked femtosecond laser. A series of discrete absolute positions of the scale grating is obtained from a series of peak wavelengths of the spectrum of the +1st- or -1st-order diffracted beam. The two beams at a specific wavelength λi interfere with each other to generate an incremental interference signal for high-resolution displacement measurement over a small interpolation range around the corresponding discrete absolute position xi. In the previous design of the optical head, the two beams were guided by optical fibers into a fiber coupler for the interference. This fiber optics design was simple and stable but could not identify the moving direction of small displacement within each interpolation range because only one interferential signal could be generated. The aim of this study is to develop a new design of the optical head, where two interference signals with a phase difference of π/2 are generated. For this purpose, free-space optics, instead of fiber optics, is adopted in the new optical head. Experiments are conducted to confirm the generation of the two phase-shifted interference signals. A Lissajous figure is plotted to verify the phase difference between the two signals.

Cite this article as:
R. Sato, T. Liu, S. Maehara, R. Okimura, H. Matsukuma, and W. Gao, “Design of an Optical Head with Two Phase-Shifted Interference Signals for Direction Detection of Small Displacement in an Absolute Surface Encoder,” Int. J. Automation Technol., Vol.18 No.2, pp. 249-256, 2024.
Data files:
References
  1. [1] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement Technologies for Precision Positioning,” CIRP Ann., Vol.64, No.2, pp. 773-796, 2015. https://doi.org/10.1016/j.cirp.2015.05.009
  2. [2] F. Z. Fang, X. D. Zhang, W. Gao, Y. B. Guo, G. Byrne, and H. N. Hansen, “Nanomanufacturing—Perspective and Applications,” CIRP Ann., Vol.66, No.2, pp. 683-705, 2017. https://doi.org/10.1016/j.cirp.2017.05.004
  3. [3] R. Schienbein, F. Fern, R. Theska, S. Supreeti, R. Füßl, and E. Manske, “Fundamental Investigations in the Design of Five-Axis Nanopositioning Machines for Measurement and Fabrication Purposes,” Nanomanuf. Metrol., Vol.4, No.3, pp. 156-164, 2021. https://doi.org/10.1007/s41871-021-00102-w
  4. [4] W. Gao, H. Haitjema, F. Z. Fang, R. K. Leach, C. F. Cheung, E. Savio, and J. M. Linares, “On-Machine and In-Process Surface Metrology for Precision Manufacturing,” CIRP Ann., Vol.68, No.2, pp. 843-866, 2019. https://doi.org/10.1016/j.cirp.2019.05.005
  5. [5] Y. Shimizu, L.-C. Chen, D. W. Kim, X. Chen, X. Li, and H. Matsukuma, “An Insight into Optical Metrology in Manufacturing,” Meas. Sci. Technol., Vol.32, No.4, Article No.042003, 2020. https://doi.org/10.1088/1361-6501/abc578
  6. [6] W. Gao and Y. Shimizu, “Optical Metrology for Precision Engineering,” De Gruyter, 2022. https://doi.org/10.1515/9783110542363
  7. [7] G. Dai, K. Hahm, L. Sebastian, and M. Heidelmann, “Comparison of EUV Photomask Metrology Between CD-AFM and TEM,” Nanomanuf. Metrol., Vol.5, No.2, pp. 91-100, 2022. https://doi.org/10.1007/s41871-022-00124-y
  8. [8] Y. Tomita, E. Kojima, S. Kawachi, Y. Koyanagawa, and S. Ootsuka, “Development and Applications of Sumitomo Precision Stage Technologies for FPD Process,” J. Jpn. Soc. Precis. Eng., Vol.78, No.2, pp. 117-121, 2012 (in Japanese). https://doi.org/10.2493/jjspe.78.117
  9. [9] S.-K. Kuo and C.-H. Menq, “Modeling and Control of a Six-Axis Precision Motion Control Stage,” IEEE/ASME Trans. Mechatron., Vol.10, No.1, pp. 50-59, 2005. https://doi.org/10.1109/TMECH.2004.842219
  10. [10] W. Gao, S. Ibaraki, M. A. Donmez, D. Kono, J. R. R. Mayer, Y.-L. Chen, K. Szipka, A. Archenti, J.-M. Linares, and N. Suzuki, “Machine Tool Calibration: Measurement, Modeling, and Compensation of Machine Tool Errors,” Int. J. Mach. Tools Manuf., Vol.187, Article No.104017, 2023. https://doi.org/10.1016/j.ijmachtools.2023.104017
  11. [11] H. Oozeki, M. Ogihara, H. Sakai, Y. Kuriyama, and H. Masuda, “Examination About Reduction of the Uncertainty by Interpolation Based on Two Phases Sine Wave of a Laser Interferometer,” J. Jpn. Soc. Precis. Eng., Vol.69, No.9, pp. 1296-1300, 2003 (in Japanese). https://doi.org/10.2493/jjspe.69.1296
  12. [12] H. Kunzmann, T. Pfeifer, and J. Flügge, “Scales vs. Laser Interferometers Performance and Comparison of Two Measuring Systems,” CIRP Ann., Vol.42, No.2, pp. 753-767, 1993. https://doi.org/10.1016/S0007-8506(07)62538-4
  13. [13] K. Erkorkmaz, J. M. Gorniak, and D. J. Gordon, “Precision Machine Tool XY Stage Utilizing a Planar Air Bearing Arrangement,” CIRP Ann., Vol.59, No.1, pp. 425-428, 2010. https://doi.org/10.1016/j.cirp.2010.03.086
  14. [14] H.-L. Hsieh, J.-C. Chen, G. Lerondel, and J.-Y. Lee, “Two-Dimensional Displacement Measurement by Quasi-Common-Optical-Path Heterodyne Grating Interferometer,” Opt. Express, Vol.19, No.10, pp. 9770-9782, 2011. https://doi.org/10.1364/OE.19.009770
  15. [15] G. Berkovic and E. Shafir, “Optical Methods for Distance and Displacement Measurements,” Adv. Opt. Photonics, Vol.4, No.4, pp. 441-471, 2012. https://doi.org/10.1364/AOP.4.000441
  16. [16] W. Gao, Y. Arai, A. Shibuya, S. Kiyono, and C. H. Park, “Measurement of Multi-Degree-of-Freedom Error Motions of a Precision Linear Air-Bearing Stage,” Precis. Eng., Vol.30, No.1, pp. 96-103, 2006. https://doi.org/10.1016/j.precisioneng.2005.06.003
  17. [17] A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, and L. Zeng, “A Sub-Nanometric Three-Axis Surface Encoder with Short-Period Planar Gratings for Stage Motion Measurement,” Precis. Eng., Vol.36, No.4, pp. 576-585, 2012. https://doi.org/10.1016/j.precisioneng.2012.04.005
  18. [18] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A Six-Degree-of-Freedom Surface Encoder for Precision Positioning of a Planar Motion Stage,” Precis. Eng., Vol.37, No.3, pp. 771-781, 2013. https://doi.org/10.1016/j.precisioneng.2013.03.005
  19. [19] K.-C. Fan and M.-J. Chen, “A 6-Degree-of-Freedom Measurement System for the Accuracy of X-Y Stages,” Precis. Eng., Vol.24, No.1, pp. 15-23, 2000. https://doi.org/10.1016/S0141-6359(99)00021-5
  20. [20] H. Matsukuma, R. Ishizuka, M. Furuta, X. Li, Y. Shimizu, and W. Gao, “Reduction in Cross-Talk Errors in a Six-Degree-of-Freedom Surface Encoder,” Nanomanuf. Metrol., Vol.2, No.2, pp. 111-123, 2019. https://doi.org/10.1007/s41871-019-00039-1
  21. [21] Y. Shimizu, H. Matsukuma, and W. Gao, “Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors,” Sensors, Vol.19, No.23, Article No.5289, 2019. https://doi.org/10.3390/s19235289
  22. [22] X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of Scale Gratings for Surface Encoders by Using Laser Interference Lithography with 405 nm Laser Diodes,” Int. J. Precis. Eng. Manuf., Vol.14, No.11, pp. 1979-1988, 2013. https://doi.org/10.1007/s12541-013-0269-6
  23. [23] Y. Shimizu, K. Mano, K. Zhang, H. Matsukuma, and W. Gao, “Accurate Polarization Control in Nonorthogonal Two-Axis Lloyd’s Mirror Interferometer for Fabrication of Two-Dimensional Scale Gratings,” Opt. Eng., Vol.58, No.9, Article No.092611, 2019. https://doi.org/10.1117/1.OE.58.9.092611
  24. [24] Y. Shimizu, R. Ishizuka, K. Mano, Y. Kanda, H. Matsukuma, and W. Gao, “An Absolute Surface Encoder with a Planar Scale Grating of Variable Periods,” Precis. Eng., Vol.67, pp. 36-47, 2021. https://doi.org/10.1016/j.precisioneng.2020.09.007
  25. [25] X. Xiong, C. Yin, L. Quan, R. Sato, H. Matsukuma, Y. Shimizu, H. Tamiya, and W. Gao, “Self-Calibration of a Large-Scale Variable-Line-Spacing Grating for an Absolute Optical Encoder by Differencing Spatially Shifted Phase Maps from a Fizeau Interferometer,” Sensors, Vol.22, No.23, Article No.9348, 2022. https://doi.org/10.3390/s22239348
  26. [26] E. Hecht, “Optics,” 5th Edition, Pearson, 2015.
  27. [27] A. Kimura, W. Gao, Y. Arai, and Z. Lijiang, “Design and Construction of a Two-Degree-of-Freedom Linear Encoder for Nanometric Measurement of Stage Position and Straightness,” Precis. Eng., Vol.34, No.1, pp. 145-155, 2010. https://doi.org/10.1016/j.precisioneng.2009.05.008
  28. [28] T. Kubota, M. Nara, and T. Yoshino, “Interferometer for Measuring Displacement and Distance,” Opt. Lett., Vol.12, No.5, pp. 310-312, 1987. https://doi.org/10.1364/OL.12.000310
  29. [29] A. Teimel, “Technology and Applications of Grating Interferometers in High-Precision Measurement,” Precis. Eng., Vol.14, No.3, pp. 147-154, 1992. https://doi.org/10.1016/0141-6359(92)90003-F
  30. [30] I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and Precise Absolute Distance Measurements at Long Range,” Nat. Photonics, Vol.3, No.6, pp. 351-356, 2009. https://doi.org/10.1038/nphoton.2009.94
  31. [31] S. Han, Y.-J. Kim, and S.-W. Kim, “Parallel Determination of Absolute Distances to Multiple Targets by Time-of-Flight Measurement Using Femtosecond Light Pulses,” Opt. Express, Vol.23, No.20, pp. 25874-25882, 2015. https://doi.org/10.1364/OE.23.025874
  32. [32] A. Asahara, A. Nishiyama, S. Yoshida, K. Kondo, Y. Nakajima, and K. Minoshima, “Dual-Comb Spectroscopy for Rapid Characterization of Complex Optical Properties of Solids,” Opt. Lett., Vol.41, No.21, pp. 4971-4974, 2016. https://doi.org/10.1364/OL.41.004971
  33. [33] H. Matsukuma, K. Ikeda, R. Sato, and W. Gao, “Autocollimation Employing Optical Frequency Comb,” Proc. SPIE, Vol.12607, Opt. Technol. Meas. Ind. Appl. Conf., Article No.1260704, 2023. https://doi.org/10.1117/12.3005523

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024