single-au.php

IJAT Vol.18 No.2 pp. 240-247
doi: 10.20965/ijat.2024.p0240
(2024)

Research Paper:

High-Efficiency Polishing of Polymer Surface Using Catalyst-Referred Etching

Daisetsu Toh*,† ORCID Icon, Kodai Takeda* ORCID Icon, Kiyoto Kayao* ORCID Icon, Yuji Ohkubo** ORCID Icon, Kazuto Yamauchi*,** ORCID Icon, and Yasuhisa Sano* ORCID Icon

*Precision Engineering and Applied Physics Division, Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Corresponding author

**Research Center for Precision Engineering, Graduate School of Engineering, Osaka University
Suita, Japan

Received:
July 25, 2023
Accepted:
October 10, 2023
Published:
March 5, 2024
Keywords:
polymer polishing, catalyst-referred etching (CARE), polycarbonate (PC), polymethyl methacrylate (PMMA), fluorinated ethylene propylene (FEP)
Abstract

Previously, we developed an abrasive-free polishing technique called catalyst-referred etching (CARE) for inorganic materials. In this method, the topmost site of the workpiece surface is preferentially removed via an indirect hydrolysis reaction promoted by a metal catalyst. In this study, we proposed applying the CARE method to polymer material polishing and demonstrated the polishing characteristics. Using the CARE method, polycarbonate, which has an easy cleavage of ester bond via hydrolysis, was polished, resulting in the smoothness of the surface roughness below 1.0 nm. Based on the surface observations, the removal mechanism was estimated as follows. Molecule chains are entangled to form clusters constituting the polymer surface and help determine the surface roughness. In the CARE method, the top of this cluster was selectively removed, thus creating a smooth surface. Polymers with C–C bonds, such as polymethyl methacrylate and fluorinated ethylene propylene, were also smoothed using the CARE method. These results indicate that the CARE method is highly effective in polishing polymer materials.

Cite this article as:
D. Toh, K. Takeda, K. Kayao, Y. Ohkubo, K. Yamauchi, and Y. Sano, “High-Efficiency Polishing of Polymer Surface Using Catalyst-Referred Etching,” Int. J. Automation Technol., Vol.18 No.2, pp. 240-247, 2024.
Data files:
References
  1. [1] C. Peixoto, P. T. Valentim, P. C. Sousa, D. Dias, C. Araújo, D. Pereira, C. F. Machado, A. J. Pontes, H. Santos, and S. Cruz, “Injection Molding of High-Precision Optical Lenses: A Review,” Precis. Eng., Vol.76, pp. 29-51, 2022. https://doi.org/10.1016/j.precisioneng.2022.02.002
  2. [2] P. Paul, K. Pfeiffer, and A. Szeghalmi, “Antireflection coating on PMMA substrates by atomic layer deposition,” Coatings, Vol.10, No.1, Article No.64, 2020. https://doi.org/10.3390/coatings10010064
  3. [3] M. La, S. M. Park, W. Kim, C. Lee, C. Kim, and D. S. Kim, “Injection molded plastic lens for relay lens system and optical imaging probe,” Int. J. Precis. Eng. Manuf., Vol.16, pp. 1801-1808, 2015. https://doi.org/10.1007/s12541-015-0235-6
  4. [4] Y. Liu, W. Chen, H. Liu, J. Luo, L. Zhao, J. Zhang, H. Wang, J. W. Wu, J. L. Feng, Y. Zhu, W. Y. Tan, T. Cui, and Y. Min, “D-π-A Strategy to boost dielectric breakdown strength of polyimide insulation,” Polym. Degrad. Stab., Vol.209, Article No.110264, 2023. https://doi.org/10.1016/j.polymdegradstab.2023.110264
  5. [5] R. Jeyakumar, Z. Gu, S. Sivoththaman, and A. Nathan, “Synthesis and characterization of low-k films for large area imaging applications,” Microelectron. Eng., Vol.99, pp. 58-61, 2021. https://doi.org/10.1016/j.mee.2012.06.010
  6. [6] Z. W. Zhong, Z. F. Wang, and Y. H. Tan, “Chemical mechanical polishing of polymeric materials for MEMS applications,” Microelectronics J., Vol.37, Issue 4, pp. 295-301, 2006. https://doi.org/10.1016/j.mejo.2005.05.016
  7. [7] M. Kishihara, K. Fujitani, A. Yamaguchi, Y. Utsumi, and I. Ohta, “Design and Fabrication of PTFE Substrate-Integrated Waveguide Butler Matrix for Short Millimeter Waves,” IEICE Trans. on Electronics, Vol.E106.C, Issue 3, pp. 111-115, 2023. https://doi.org/10.1587/transele.2022ECS6003
  8. [8] T. Saeidi, A. J. Abdullah, and S. Karamzadeh, “A Miniaturized Full-Ground Dual-Band MIMO Spiral Button Wearable Antenna for 5G and Sub-6 GHz Communications,” Sensors, Vol.23, Issue 4, Article No.1997, 2023. https://doi.org/10.3390/s23041997
  9. [9] P. Kianfar, R. Bongiovanni, B. Ameduri, and A. Vitale, “Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications,” Polym. Rev., Vol.63, Issue 1, pp. 127-199, 2023. https://doi.org/10.1080/15583724.2022.2067868
  10. [10] M. Ovsik, M. Stanek, A. Dockal, P. Fluxa, and V. Chalupa, “The Influence of Surface Quality on Flow Length and Micro-Mechanical Properties of Polycarbonate,” Materials, Vol.14, Issue 20, Article No.5910, 2021. https://doi.org/10.3390/ma14205910
  11. [11] N. Milan, M. Sorgato, P. Parenti, M. Annoni, and G. Lucchetta, “Effects of Micromilled NiP Mold Surface Topography on the Optical Characteristics of Injection Molded Prismatic Retroreflectors,” Precis. Eng., Vol.61, pp. 126-135, 2019. https://doi.org/10.1016/j.precisioneng.2019.10.006
  12. [12] Y. Saito, J. Kaneko, T. Abe, and K. Horio, “Development of Scanning Line Tool Path Generation Algorithm Using Boundary Position Information of Approximate Polyhedron of Complex Molds,” Int. J. Automation Technol., Vol.14, No.3, pp. 491-499, 2020. https://doi.org/10.20965/ijat.2020.p0491
  13. [13] M. Y. Tsai, Y. F. Lin, J. K. Ho, and J. G. Yang, “Ultrasonic-Assisted Innovative Polyurethane Tool to Polish Mold Steel,” Int. J. Automation Technol., Vol.13, No.2, pp. 199-206, 2019. https://doi.org/10.20965/ijat.2019.p0199
  14. [14] A. Motegi, T. Hishida, and Y. Murata, “Restraint of Voids Generated Inside Injection Molded Products by In-Mold Pressing Method,” Int. J. Automation Technol., Vol.12, No.6, pp. 930-939, 2018. https://doi.org/10.20965/ijat.2018.p0930
  15. [15] M. Feng, Y. Xie, L. Chen, and Y. Wu, “Investigation on Feasibility of Polishing Concave Surfaces Using Magnetic Compound Fluid Slurry,” Int. J. Automation Technol., Vol.15, No.1, pp. 34-40, 2021. https://doi.org/10.20965/ijat.2021.p0034
  16. [16] H. Kodama, H. Koyama, T. Ishii, Y. Tanimoto, and K. Ohashi, “Concentric Mutual Lapping to Improve Sliding Surface Function of SiC Ceramics,” Int. J. Automation Technol., Vol.13, No.6, pp. 756-764, 2019. https://doi.org/10.20965/ijat.2019.p0756
  17. [17] C. Dong and Y. Zou, “New Magnetic Abrasive Finishing for Alumina Ceramic Plane Using Alternating Magnetic Fields,” Int. J. Automation Technol., Vol.13, No.6, pp. 775-779, 2019. https://doi.org/10.20965/ijat.2019.p0775
  18. [18] Z. Chen, J. Xie, Q. He, H. Yang, and Y. Luo, “Improving metal surface integrity by integrating mechanical stress fields during micron- and nano-abrasive machining,” Int. J. Mech. Sci., Vol.240, Article No.107928, 2023. https://doi.org/10.1016/j.ijmecsci.2022.107928
  19. [19] K. Umezu, T. Kozaki, Y. Okamoto, and A. Okada, “Investigation on Surface Smoothing of Mold Material by Pulsed Laser Irradiation of 532 nm,” Procedia CIRP, Vol.95, pp. 879-884, 2020. https://doi.org/10.1016/j.procir.2020.02.283
  20. [20] T. Guan, Z. Sana, H. D. Pieter, M. Tianyu, Y. Ruibo, F. Fengzhou, and Z. Nan, “Precision electroforming of nickel nanocomposite mould for defects-free demoulding in polymer micro replication: Surface properties, performance validation and mould release mechanism,” J. Manuf. Process., Vol.94, pp. 196-213, 2023. https://doi.org/10.1016/j.jmapro.2023.03.054
  21. [21] I. Karagöz, “An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials,” Polym. Bull., Vol.78, pp. 2627-2644, 2021. https://doi.org/10.1007/s00289-020-03231-2
  22. [22] Y. Murata, T. Inoue, and T. Fujibayashi, “Investigation of Flash Generation Process for Engineering Plastic by Flash Generation-Evaluating Mold,” Int. J. Automation Technol., Vol.11, No.1, pp. 90-96, 2017. https://doi.org/10.20965/ijat.2017.p0090
  23. [23] K. Mu, M. Nikawa, K. Hayakawa, H. Shima, and M. Yamashita, “Effect of Powder Mold Release Agent on Aluminum Alloy Melt Under Gravity Casting Conditions,” Int. J. Automation Technol., Vol.16, No.6, pp. 888-896, 2022. https://doi.org/10.20965/ijat.2022.p0888
  24. [24] U. Satake, T. Enomoto, T. Miyagawa, T. Ohsumi, H. Nakagawa, and K. Funabashi, “Stabilization of Removal Rate in Small Tool Polishing of Glass Lenses,” Int. J. Automation Technol., Vol.13, No.2, pp. 221-229, 2019. https://doi.org/10.20965/ijat.2019.p0221
  25. [25] K. Koyama, H. Aida, M. Uneda, H. Takeda, S. W. Kim, H. Takei, T. Yamazaki, and T. Doi, “Effects of N-Face Finishing on Geometry of Double-Side Polished GaN Substrate,” Int. J. Automation Technol., Vol.8, No.1, pp. 121-127, 2014. https://doi.org/10.20965/ijat.2014.p0121
  26. [26] W. Xie, Z. Zhang, S. Yu, L. Li, X. Cui, Q. Gu, and Z. Wang, “High efficiency chemical mechanical polishing for silicon wafers using a developed slurry,” Surf. Interfaces, Vol.38, Article No.102833, 2023. https://doi.org/10.1016/j.surfin.2023.102833
  27. [27] J. Shen, H. Chen, J. Chen, L. Lin, Y. Gu, Z. Jiang, J. Li, and T. Sun, “Mechanistic difference between Si-face and C-face polishing of 4H-SiC substrates in aqueous and non-aqueous slurries,” Ceram. Int., Vol.49, Issue 5, pp. 7274-7283, 2023. https://doi.org/10.1016/j.ceramint.2022.10.193
  28. [28] F. Xu, W. Wang, A. Xu, D. Feng, W. Liu, and Z. Song, “Effect of Particle Size and pH Value of Slurry on Chemical Mechanical Polishing of SiO2 Film,” ECS J. Solid State Sci. Technol., Vol.11, No.1, Article No.013004, 2022. https://doi.org/10.1149/2162-8777/ac495f
  29. [29] X. Yu, B. Zhang, R. Wang, Z. Kao, S. Yang, and W. Wei, “Effect of photocatalysts on electrochemical properties and chemical mechanical polishing rate of GaN,” Mater. Sci. Semicond. Process., Vol.121, Article No.105387, 2021. https://doi.org/10.1016/j.mssp.2020.105387
  30. [30] D. Speed, P. Westerhoff, R. Sierra-Alvarez et al., “Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: Towards environmental health and safety assessments,” Environ. Sci. NaNo., Vol.2, Issue 3, pp. 227-244, 2015. https://doi.org/10.1039/C5EN00046G
  31. [31] L. Zazzera, B. Mader, M. Ellefson, J. Eldridge, S. Loper, J. Zabasajja, and J. Qian, “Comparison of ceria nanoparticle concentrations in effluent from chemical mechanical polishing of silicon dioxide,” Environ. Sci. Technol., Vol.48, No.22, pp. 13427-13444, 2014. https://doi.org/10.1021/es5029124
  32. [32] X. Bi and P. Westerhoff, “Adsorption of iii/v ions (In(III), Ga(III) and As(v)) onto SiO2, CeO2 and Al2O3 nanoparticles used in the semiconductor industry,” Environ. Sci. NaNo., Vol.3, Issue 5, pp. 1014-1026, 2016. https://doi.org/10.1039/C6EN00184J
  33. [33] D. Toh, P. V. Bui, A. Isohashi, N. Kidani, S. Matsuyama, Y. Sano, Y. Morikawa, and K. Yamauchi, “Catalyzed chemical polishing of SiO2 glasses in pure water,” Rev. Sci. Instrum., Vol.90, Issue 4, Article No.045115, 2019. https://doi.org/10.1063/1.5090320
  34. [34] A. Isohashi, P. V. Bui, D. Toh, S. Matsuyama, Y. Sano, K. Inagaki, Y. Morikawa, and K. Yamauchi, “Chemical etching of silicon carbide in pure water by using platinum catalyst,” Vol.110, Issue 20, Article No.201601, 2017. https://doi.org/10.1063/1.4983206
  35. [35] D. Toh, P. V. Bui, K. Yamauchi, and Y. Sano, “Photoelectrochemical Oxidation Assisted Catalyst-Referred Etching for SiC (0001) Surface,” Int. J. Automation Technol., Vol.15, No.1, pp. 74-79, 2021. https://doi.org/10.20965/ijat.2021.p0074
  36. [36] S. Sadakuni, J. Murata, Y. Sano, K. Yagi, S. Matsuyama, and K. Yamauchi, “Bias-Assisted Photochemical Planarization of GaN (0001) Substrate with Damage Layer,” Jpn. J. Appl. Phys., Vol.52, No.3R, Article No.036504, 2013. https://doi.org/10.7567/JJAP.52.036504
  37. [37] K. Kayao, D. Toh, K. Yamauchi, and Y. Sano, “Role of Photoelectrochemical Oxidation in Enabling High-Efficiency Polishing of Gallium Nitride,” ECS J. Solid State Sci. Technol., Vol.12, No.6, Article No.063005, 2023. https://doi.org/10.1149/2162-8777/acde61
  38. [38] D. Toh, K. Kayao, P. V. Bui, K. Inagaki, Y. Morikawa, K. Yamauchi, and Y. Sano, “Catalyst enhancement approach for improving the removal rate and stability of silica glass polishing via catalyzed chemical etching in pure water,” Precis. Eng., Vol.84, pp. 21-27, 2023. https://doi.org/10.1016/j.precisioneng.2023.07.003
  39. [39] P. V. Bui, D. Toh, A. Isohashi, S. Matsuyama, K. Inagaki, Y. Sano, K. Yamauchi, and Y. Morikawa, “Platinum-catalyzed hydrolysis etching of SiC in water: A density functional theory study,” Jpn. J. Appl. Phys., Vol.57, No.5, Article No.055703, 2018. https://doi.org/10.7567/JJAP.57.055703
  40. [40] P. V. Bui, Y. Sano, Y. Morikawa, and K. Yamauchi, “Characteristics and Mechanism of Catalyst-Referred Etching Method: Application to 4H-SiC,” Int. J. Automation Technol., Vol.12, No.2, pp. 154-159, 2018. https://doi.org/10.20965/ijat.2018.p0154
  41. [41] T. Kajiyama, K. Tanaka, S.-R. Ge, and A. Takahara, “Morphology and mechanical properties of polymer surfaces via scanning force microscopy,” Prog. Surf. Sci., Vol.52, Issue 1, pp. 1-52, 1996. https://doi.org/10.1016/0079-6816(96)00006-8
  42. [42] L. T. Hwang and I. Turlik, “A review of the skin effect as applied to thin film interconnections,” IEEE Trans. Compon., Hybrids, Manuf. Technol., Vol.15, Issue 1, pp. 43-55, 1992. https://doi.org/10.1109/33.124191
  43. [43] I. P. Beletskaya and V. P. Ananikov, “Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges,” Chem. Rev., Vol.122, No.21, pp. 16110-16293, 2022. https://doi.org/10.1021/acs.chemrev.1c00836

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024