IJAT Vol.18 No.1 pp. 84-91
doi: 10.20965/ijat.2024.p0084

Research Paper:

Repetition Frequency Control of a Mid-Infrared Ultrashort Pulse Laser

Hiraku Matsukuma*,†, Masashi Nagaoka*, Hisashi Hirose*, Ryo Sato*, Yuki Shimizu**, and Wei Gao*

*Department of Finemechanics, Tohoku University
6-6-01 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Corresponding author

**Division of Mechanical and Space Engineering, Hokkaido University
Sapporo, Japan

April 7, 2023
June 14, 2023
January 5, 2024
mid-infrared laser, mode-locked laser, repetition frequency, phase-locked loop

In this study, a method for controlling the repetition frequency of a mid-infrared ultrashort pulse laser with a central wavelength of 2.8 µm is developed. A ring cavity that is insensitive to the polarization state of the laser light emitted from the fiber end was constructed to stabilize the oscillation of the mid-infrared ultrashort pulse laser. More oscillation conditions for the ultrashort pulse laser based on nonlinear polarization rotation are found than the conventional method. To confirm that the pulse oscillation is mode-locked, ultrashort pulse oscillation was confirmed by an autocorrelator. The pulse repetition frequency of this robust ultrashort pulse laser was controlled. The control method was based on the phase-locked loop (PLL) control. A wedge window was inserted into the cavity and mounted on a linear stage driven by a piezoelectric transducer. By driving the piezoelectric transducer, the position of the wedge window changed, and the resulting optical path length also changed. The repetition frequency was controlled based on this principle. Optical path length control by the wedge window and temperature control provides an Allan deviation of approximately 1 mHz.

Cite this article as:
H. Matsukuma, M. Nagaoka, H. Hirose, R. Sato, Y. Shimizu, and W. Gao, “Repetition Frequency Control of a Mid-Infrared Ultrashort Pulse Laser,” Int. J. Automation Technol., Vol.18 No.1, pp. 84-91, 2024.
Data files:
  1. [1] T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature, Vol.416, pp. 233-237, 2002.
  2. [2] M. Wada, S. Okubo, K. Kashiwagi, F.-L. Hong, K. Hosaka, and H. Inaba, “Evaluation of Fiber Noise Induced in Ultrastable Environments,” IEEE Trans. on Instrumentation and Measurement, Vol.68, No.6, pp. 2246-2252, 2019.
  3. [3] H. Wang, L. Wang, and X. Xu, “Scattering-type scanning near-field optical microscopy with low-repetition-rate pulsed light source through phase-domain sampling,” Nat. Commun., Vol.7, 13212, 2016.
  4. [4] D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express, Vol.17, No.9, pp. 7011-7018, 2009.
  5. [5] T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express, Vol.26, No.8, pp. 9484-9491, 2018.
  6. [6] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science, Vol.288, Issue 5466, pp. 635-640, 2000.
  7. [7] E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett., Vol.34, Issue 5, pp. 638-640, 2009.
  8. [8] S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett., Vol.34, Issue 20, pp. 3062-3064, 2009.
  9. [9] S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piche, and R. Vallee, “Femtosecond fiber lasers reach the mid-infrared,” Optica Vol.2, Issue 7, pp. 623-626, 2015.
  10. [10] O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 µm using dual-wavelength pumping,” Opt. Lett., Vol.39, Issue 3, pp. 493-496, 2014.
  11. [11] S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon., Vol.6, pp. 423-431, 2012.
  12. [12] Y. O. Aydı n, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, and M. Bernier, “Diode-pumped mid-infrared fiber laser with 50% slope efficiency,” Optica., Vol.4, pp. 235-238, 2017.
  13. [13] N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+: ZBLAN fiber laser at 3.47 µm,” Opt. Lett., Vol.43, pp. 2724-2727, 2018.
  14. [14] C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nature Photon., Vol.8, pp. 830-834, 2014.
  15. [15] A. Elkhazraji, M. K. Shakfa, N. Abualsaud, M. Mhanna, M. Sy, M. Marangoni, and A. Farooq, “Laser-based sensing in the long-wavelength mid-infrared: chemical kinetics and environmental monitoring applications,” Applied Optics, Vol.62, pp. A46-A58, 2023.
  16. [16] O. Y. F. Henry, S. A. Piletsky, and D. C. Cullen, “Fabrication of molecularly imprinted polymer microarray on a chip by mid-infrared laser pulse initiated polymerisation,” Biosensors and Bioelectronics, Vol.23, pp. 1769-1775, 2008.
  17. [17] G. Levy, G. F. Koubi, and L. J. Miserendino, “Cutting efficiency of a mid-infrared laser on human enamel,” J. Endodontics, Vol.24, pp. 97-101, 1998.
  18. [18] H. Matsukuma, Y. Asumi, M. Nagaoka, Y. Shimizu, and W. Gao, “An autocollimator with a mid-infrared laser for angular measurement of rough surfaces,” Precis. Eng., Vol.67, pp. 89-99, 2021.
  19. [19] H. Matsukuma, K. Matayoshi, M. Nagaoka, Y. Shimizu, and W. Gao, “Mid-infrared autocollimation for linear motion error measurement,” Measurement: Sensors, Vol.18, 100265, 2021.
  20. [20] N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. T. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl., Vol.8, 11, 2019.
  21. [21] B. Guo, J. Sun, Y. Hua, N. Zhan, J. Jia, and K. Chu, “Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications,” Nanomanufacturing and Metrology, Vol.3, pp. 26-67, 2020.
  22. [22] X. Liang, T. Wu, J. Lin, L. Yan, and J. Zhu, “Optical Frequency Comb Frequency-division Multiplexing Dispersive Interference Multichannel Distance Measurement,” Nanomanuf Metrol, Vol.6, 6, 2023.
  23. [23] H. Matsukuma, R. Sato, Y. Shimizu, and W. Gao, “Measurement Range Expansion of Chromatic Confocal Probe with Supercontinuum Light Source,” Int. J. Automation Technol., Vol.15, No.4, pp. 529-536, 2021.
  24. [24] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals, Vol.64, pp. 773-796, 2015.
  25. [25] D. W. Shin, H. Matsukuma, R. Sato, and W. Gao, “Fabry-Pérot angle sensor using a mode-locked femtosecond laser source,” Opt. Express, Vol.30, pp. 46366-46382, 2022.
  26. [26] L. Quan, Y. Shimizu, R. Sato, D. W. Shin, H. Matsukuma, A. Archenti, and W. Gao, “Design and Testing of a Compact Optical Angle Sensor for Pitch Deviation Measurement of a Scale Grating with a Small Angle of Diffraction,” Int. J. Automation Technol., Vol.16, No.5, pp. 572-581, 2022.
  27. [27] W. Gao, H. Haitjema, F. Z. Fang, R. K. Leach, C. F. Cheung, E. Savio, and J. M. Linares, “On-machine and in-process surface metrology for precision manufacturing,” CIRP Annals, Vol.68, pp. 843-866, 2019.
  28. [28] D. Ding, Z. Zhao, X. Zhang, Y. Fu, and J. Xu, “Evaluation and compensation of laser-based on-machine measurement for inclined and curved profiles,” Measurement, Vol.151, 107236, 2020.
  29. [29] D. W. Shin, L. Quan, Y. Shimizu, H. Matsukuma, Y. Cai, E. Manske, and W. Gao, “In-Situ Evaluation of the Pitch of a Reflective-Type Scale Grating by Using a Mode-Locked Femtosecond Laser,” Applied Sciences, Vol.11, 8028, 2021.
  30. [30] L. Quan, Y. Shimizu, X. Xiong, H. Matsukuma, and W. Gao, “A new method for evaluation of the pitch deviation of a linear scale grating by an optical angle sensor,” Precis. Eng., Vol.67, pp. 1-13, 2021.
  31. [31] A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express, Vol.12, pp. 5125-5130, 2004.
  32. [32] M. Poulain, M. Poulain, and J. Lucas, “Verres fluores au tetrafluorure de zirconium proprietes optiques d’un verre dope au Nd3+,” Materials Research Bulletin, Vol.10, pp. 243-246, 1975.
  33. [33] B. Shafei, M. Kazemian, M. Dopko, and M. Najimi, “State-of-the-Art Review of Capabilities and Limitations of Polymer and Glass Fibers Used for Fiber-Reinforced Concrete,” Materials, Vol.14, 409, 2021.
  34. [34] [Accessed June 14, 2023]
  35. [35] K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett., Vol.18, pp. 220-222, 1993.
  36. [36] K. Iwakuni, “Advanced Infrared Spectroscopy Using Optical Frequency Combs,” Ph.D. thesis, Keio University, 2015.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 23, 2024