single-au.php

IJAT Vol.17 No.1 pp. 5-13
doi: 10.20965/ijat.2023.p0005
(2023)

Research Paper:

Influence of the Impact Angle on Machining in Powder Jet Processing

Chieko Kuji*1,†, Kuniyuki Izumita*2, Keita Shimada*3,*4, Masayoshi Mizutani*3, Keiichi Sasaki*5, and Tsunemoto Kuriyagawa*6

*1Department of Finemechanics, Graduate School of Engineering, Tohoku University
6-6-01 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Corresponding author

*2Perioperative Oral Health Management, Tohoku University Hospital, Sendai, Japan

*3Department of Mechanical Systems Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan

*4Applied Research Laboratory, High Energy Accelerator Research Organization, Tsukuba, Japan

*5Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan

*6Center for Co-Creation Strategy, Tohoku University, Sendai, Japan

Received:
June 20, 2022
Accepted:
September 5, 2022
Published:
January 5, 2023
Keywords:
powder jet deposition, abrasive jet machining, hydroxyapatite, impact angle, machining efficiency
Abstract

Powder jet machining is a blast machining process in which micrometer-order particles are projected onto a workpiece at near-supersonic speeds, to remove the workpiece (abrasive jet machining (AJM)) or to deposit the particles (powder jet deposition (PJD)). We report a novel dental treatment method for powder jet machining using hydroxyapatite, which is the main component of teeth, as deposited particles. The surfaces and interdental spaces of human teeth are not only flat, but also have complex groove structures. However, PJD and AJM exhibit impact-angle-dependent machining phases. Therefore, it is necessary to investigate the effect of the particle impact angle on machining, before dental treatment. Furthermore, because machining interacts not only with the particle impact angle but also with the particle impact velocity, a comprehensive investigation of the effects of the machining parameters is required, for delineating the phase-transition conditions. Accordingly, in this study, we conducted machining experiments using hydroxyapatite particles (particle diameter, 2.16 μm) and four different blasting angles of 30°, 45°, 60°, and 90°, to infer the machining amount. Machining efficiency was evaluated based on the amount of machining. The impact angles and velocities of the particles were calculated using computational fluid dynamics (CFD). Three-dimensional process mapping was performed using the machining amount, particle impact angle, and particle impact velocity, obtained from the experiments and CFD calculations. The results showed that PJD crossed to AJM at the impact angle of approximately 60°. Moreover, PJD exhibited high processing efficiency for impact angles above 60° and impact velocities in the 280–310 m/s range. In contrast, AJM exhibited high processing efficiency for impact angles below approximately 35° and impact velocities above 310 m/s.

Cite this article as:
C. Kuji, K. Izumita, K. Shimada, M. Mizutani, K. Sasaki, and T. Kuriyagawa, “Influence of the Impact Angle on Machining in Powder Jet Processing,” Int. J. Automation Technol., Vol.17, No.1, pp. 5-13, 2023.
Data files:
References
  1. [1] R. Melentiev and F. Z. Fang, “Recent advances and challenges of abrasive jet machining,” CIRP J. Manuf. Sci. Technol., Vol.22, pp. 1-20, 2018.
  2. [2] H. Kodama, S. Nakamae, M. Harada, D. Wada, and K. Ohashi, “Abrasive jet machining for the microprofile control patterning of herringbone grooves,” Precis. Eng., Vol.72, pp. 527-542, 2021.
  3. [3] C. Nishikawa, K. Mizutani, T. Zhou, J. Yan, and T. Kuriyagawa, “Investigation of Particle Impact Phenomena in Powder Jet Deposition Process,” Key Eng. Mater., Vols.523-524, pp. 184-189, 2012.
  4. [4] C. Nishikawa, N. Mizukuchi, A. Tomie, K. Shimada, M. Mizutani, and T. Kuriyagawa, “Characteristics of Thick Film Deposition in Powder Jet Machining,” Int. J. Automation Technol., Vol.7, No.6, pp. 630-637, 2013.
  5. [5] C. Nishikawa and T. Kuriyagawa, “Film formation under normal temperature and pressure utilized powder jet deposition,” J. Jpn. Soc. Abras. Technol., Vol.57, pp. 782-785, 2013 (in Japanese).
  6. [6] L. Pawlowski, “Suspension and solution thermal spray coatings,” Surf. Coat. Technol., Vol.203, pp. 2807-2829, 2009.
  7. [7] N. Bala, H. Singh, J. Karthikeyan, and S. Prakash, “Cold spray coating process for corrosion protection: a review,” Surf. Eng., Vol.30, pp. 414-421, 2014.
  8. [8] M. Schubert, D. Hanft, T. Nazarenus, J. Exner, M. Schubert, P. Nieke, P. Glosse, N. Leupold, J. Kita, and R. Moos, “Powder aerosol deposition method – novel applications in the field of sensing and energy technology,” Funct. Mater. Lett., Vol.12, 1930005, 2019.
  9. [9] L. L. Hench, “Bioceramics,” J. Am. Ceram. Soc., Vol.81, pp. 1705-1728, 1998.
  10. [10] N. Hongo, H. Yamamoto, T. Sunouchi, A. Tomie, K. Izumita, K. Sasaki, K. Shimada, M. Mizutani, and T. Kuriyagawa, “Restoring tooth color by Powder Jet Deposition,” J. Jpn. Soc. Abras. Technol., Vol.65, pp. 556-561, 2021 (in Japanese).
  11. [11] K. Mizutani, N. Yoshihara, J. Yan, T. Kuriyagawa, and S. Z. M. Saeed, “Study of Ceramics Film Creation by Powder Jet Deposition,” J. Soc. Prec. Eng. Proc. Conf., Vol.2010S, pp. 69-70, 2010 (in Japanese).
  12. [12] C. Nishikawa, K. Mizutani, T. Zhou, J. Yan, and T. Kuriyagawa, “Study on the mechanism of powder jet machining,” J. Jpn. Soc. Abras. Technol., Vol.56, pp. 179-183, 2012 (in Japanese).
  13. [13] Y. N. Umalkar, N. Mankar, R. Rajnekar, and S. Sathe, “Pit and Fissure Sealants,” J. Res. Med. Dent. Sci., Vol.10, pp. 52-56, 2022.
  14. [14] M. B. Liu, G. R. Liu, and Z. Zong, “An Overview On Smoothed Particle Hydrodynamics,” Int. J. Comput. Methods, Vol.5, pp. 135-188, 2008.
  15. [15] K. Sato, C. Nishikawa, T. Hagiwara, K. Shimada, W. Horiuch, K. Matsumura, R. Akatsuka, K. Sasaki, T. Ishizaki, T. Arakawa, K. Ohta, M. Mizutani, and T. Kuriyagawa, “Creation of Hydroxyapatite Film on Human Enamel Utilized Powder Jet Deposition,” Trans. Jpn. Soc. Mech. Eng., Vol.79, pp. 4634-4642, 2013 (in Japanese).
  16. [16] R. Akatsuka, K. Sasaki, M. S. S. Zahmaty, M. Noji, T. Anada, O. Suzuki, and T. Kuriyagawa, “Characteristics of hydroxyapatite film formed on human enamel with the powder jet deposition technique,” J. Biomed. Mater. Res. Part B-Appl. Biomater., Vol.98B, pp. 210-216, 2011.
  17. [17] M. Mizutani, C. Kuji, H. Ohisa, S. Nishimura, K. Mizutani, R. Akatsuka, K. Sasaki, S. Xu, K. Shimada, and T. Kuriyagawa, “Particle fracture behavior and deposition mechanism in powder jet deposition (PJD),” J. Jpn. Soc. Abras. Technol., Vol.61, pp. 28-33, 2017 (in Japanese).
  18. [18] A. Tomie, C. Kuji, R. Akatsuka, K. Sasaki, K. Shimada, M. Mizutani, and Y. Kuriyagawa, “Study on particle impact angle in powder jet machining (Dental treatment by hydroxyapatite film coating),” Trans. Jpn. Soc. Mech. Eng., Vol.83, 17-00169, 2017 (in Japanese).
  19. [19] R. R. Navthar, S. G. Kotakar, and M. Y. Khire, “Computational Fluid Dynamics: Computer Simulation,” Proc. 3rd Int. Conf. Compt. Technol. Dev., pp. 347-351, 2011.
  20. [20] E. R. Dumont, “Mammalian enamel prism patterns and enamel deposition rates,” Scan. Microsc., Vol.9, pp. 429-442, 1995.
  21. [21] T. Shibuya, M. S. S. Zahmaty, K. Mizutani, N. Yoshihara, J. Yan, and T. Kuriyagawa, “Optimization of double nozzle type Powder Jet Deposition device,” Proc. Manuf. Machine Tool Conf. (hosted by Jpn. Soc. Mech. Eng.), Vol.2008.7, pp. 299-300, 2008 (in Japanese).
  22. [22] Ansys Inc., “ANSYS FLUENT 12.0 Theory Guide,” pp. 4-11 to 4-25, 2010.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Feb. 01, 2023