single-au.php

IJAT Vol.16 No.5 pp. 615-623
doi: 10.20965/ijat.2022.p0615
(2022)

Paper:

Mechanical Joining with Aluminum Part by 3D Printing of Polylactic Acid and Acrylonitrile-Butadiene-Styrene Parts for Fabrication of Multi-Material Parts

Yuki Nakagawa*,**,†, Ayumu Abe**, and Masahiko Yoshino**

*Department of Systems, Control and Information Engineering, National Institute of Technology, Asahikawa College
2-2-1-6 Shunkodai, Asahikawa, Hokkaido 071-8142, Japan

Corresponding author

**School of Engineering, Tokyo Institute of Technology, Tokyo, Japan

Received:
February 18, 2022
Accepted:
June 13, 2022
Published:
September 5, 2022
Keywords:
3D printing, multi-material, joining, caulking, tensile shear strength
Abstract

In this study, the manufacturing process of multi-material parts by simultaneous mechanical joining and three-dimensional (3D) printing of plastic parts was developed. In this process, a metal part with a hole sets on a lower 3D printed plastic part having a projection, and an upper plastic part is deposited on the metal part, while caulking is formed by a 3D printer. The effect of 3D printing conditions and a dimension of caulking on the joint strength was evaluated through the tensile shear and three-point bending tests. It was observed that squashing the projection while printing the upper part effectively improved the strength. The strength decreased as the clearance increased, whereas the shape of the projection was changed to a cylinder and a cone to ease positioning while preventing a decrease in the strength.

Cite this article as:
Y. Nakagawa, A. Abe, and M. Yoshino, “Mechanical Joining with Aluminum Part by 3D Printing of Polylactic Acid and Acrylonitrile-Butadiene-Styrene Parts for Fabrication of Multi-Material Parts,” Int. J. Automation Technol., Vol.16 No.5, pp. 615-623, 2022.
Data files:
References
  1. [1] M. Kleiner, M. Geiger, and A. Klaus, “Manufacturing of lightweight components by metal forming,” CIRP Annals, Vol.52, No.2, pp. 521-542, doi: 10.1016/S0007-8506(07)60202-9, 2003.
  2. [2] K. Mori, P. F. Bariani, B. A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, and J. Yanagimoto, “Hot stamping of ultra-high strength steel parts,” CIRP Annals, Vol.66, No.2, pp. 755-777, doi: 10.1016/j.cirp.2017.05.007, 2017.
  3. [3] Y. Nakagawa, K. Mori, and T. Maeno, “Springback-free mechanism in hot stamping of ultra-high-strength steel parts and deformation behaviour and quenchability for thin sheet,” Int. J. Adv. Manuf. Technol., Vol.95, No.1, pp. 459-467, doi: 10.1007/s00170-017-1203-3, 2018.
  4. [4] R. George, A. Bardelcik, and M. J. Worswick, “Hot forming of boron steels using heated and cooled tooling for tailored properties,” J. Mater. Proc. Technol., Vol.212, No.11, pp. 2386-2399, doi: 10.1016/j.jmatprotec.2012.06.028, 2012.
  5. [5] B. T. Tang, Q. L. Wang, S. Bruschi, A. Ghiotti, and P. F. Bariani, “Influence of temperature and deformation on phase transformation and Vickers hardness in tailored tempering process: numerical and experimental verifications,” ASME J. Manuf. Sci. Eng., Vol.136, No.5, 051018, doi: 10.1115/1.4027816, 2014.
  6. [6] P. Hein and J. Wilsius, “Status and innovative trends in hot stamping of USIBOR 1500 P,” Steel Res. Int., Vol.79, No.2, pp. 85-91, doi: 10.1002/srin.200806321, 2008.
  7. [7] Y. Nakagawa, K. Mori, Y. Suzuki, and Y. Shimizu, “Tailored tempering without die heating in hot stamping of ultra-high strength steel parts,” Mater. Des., Vol.192, 08704, doi: 10.1016/j.matdes.2020.108704, 2020.
  8. [8] X. Cui, H. Zhang, S. Wang, L. Zhang, and J. Ko, “Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration,” Mater. Des., Vol.32, pp. 815-821, doi: 10.1016/j.matdes.2010.07.018, 2011.
  9. [9] T. A. Barnes and I. R. Pashby, “Joining techniques for aluminum spaceframes used in automobiles. Part II – adhesive bonding and mechanical fasteners,” J. Mater. Process. Technol., Vol.99, No.1, pp. 72-79, doi: 10.1016/S0924-0136(99)00361-1, 2000.
  10. [10] E. A. S. Marques, L. F. M. da Silva, M. D. Banea, and R. J. C Carbas, “Adhesive joints for low- and high-temperature use: An overview,” J. Adhes., Vol.91, No.7, pp. 556-585, 2015.
  11. [11] N. Nong, O. Keju, Z. Yu, Q. Zhiyuan, T. Changcheng, and L. Feipeng, “Research on press joining technology for automotive metallic sheets,” J. Mater. Process. Technol., Vol.137, Nos.1-3, pp. 159-163, doi: 10.1016/S0924-0136(02)01083-X, 2003.
  12. [12] Y. Abe and K. Mori, “Mechanical clinching and self-pierce riveting for sheet combination of 780-MPa high-strength steel and aluminium alloy A5052 sheets and durability on salt spray test of joints,” Int. J. Adv. Manuf. Technol., Vol.113, pp. 59-72, doi: 10.1007/s00170-020-06545-7, 2021.
  13. [13] F. Lambiase and D. C. Ko, “Two-steps clinching of aluminum and carbon fiber reinforced polymer sheets,” Compos. Struct., Vol.164, pp. 180-188, doi: 10.1016/j.compstruct.2016.12.072, 2017.
  14. [14] R. Matsuzaki, M. Ueda, M. Namiki, T. K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, and Y. Hirano, “Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation,” Sci. Rep., Vol.6, 23058, doi: 10.1038/srep23058, 2016.
  15. [15] S. M. F. Kabir, K. Mathur, and S. M. F. Seyam, “A critical review on 3D printed continuous fibre-reinforced composites: history, mechanism, materials and properties,” Compos. Struct., Vol.232, No.15, 111476, doi: 10.1016/j.compstruct.2019.111476, 2020.
  16. [16] C. Yang, X. Tian, T. Liu, Y. Cao, and D. Li, “3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance,” Rapid Prototyp. J., Vol.23, No.1, pp. 209-215, doi: 10.1108/RPJ-08-2015-0098, 2017.
  17. [17] B. Akhoundi, A. H. Behravesh, and A. B. Saed, “Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer,” J. Reinf. Plast. Compos., Vol.38, No.3, pp. 99-116, doi: 10.1177/0731684418807300, 2019.
  18. [18] Y. Yaguchi, K. Takeuchi, T. Waragai, and T. Tateno, “Durability evaluation of an additive manufactured biodegradable composite with continuous natural fiber in various conditions reproducing usage environment,” Int. J. Automation Technol., Vol.14, No.6, pp. 959-965, doi: 10.20965/ijat.2020.p0959, 2020.
  19. [19] Z. Hou, X. Tian, J. Zhang, and D. Li, “3D printed continuous fibre reinforced composite corrugated structure,” Compos. Struct., Vol.184, pp. 1005-1010, doi: 10.1016/j.compstruct.2017.10.080, 2018.
  20. [20] K. Mori, T. Maeno, and Y. Nakagawa, “Dieless forming of carbon fibre reinforced plastic parts using 3D printer,” Proc. Eng., Vol.81, pp. 1595-1600, doi: 10.1016/j.proeng.2014.10.196, 2014.
  21. [21] Y. Nakagawa, K. Mori, and T. Maeno, “3D printing of carbon fibre-reinforced plastic parts,” Int. J. Adv. Manuf. Technol., Vol.91, Nos.5-8, pp. 2811-2817, doi: 10.1007/s00170-016-9891-7, 2017.
  22. [22] T. J. Coogan and D. O. Kazmer, “Bond and part strength in fused deposition modeling,” Rapid Prototyp. J., Vol.23, No.2, pp. 414-422, doi: 10.1108/RPJ-03-2016-0050, 2017.
  23. [23] A. Armillotta, M. Bellotti, and M. Cavallaro, “Warpage of FDM parts: Experimental tests and analytic model,” Robot. Comput. Integr. Manuf., Vol.50, pp. 140-152, doi: 10.1016/j.rcim.2017.09.007, 2018.
  24. [24] P. Han, A. Tofangchi, S. Zhang, A. Desphande, and K. Hsu, “Effect of in-process laser interface heating on strength isotropy of extrusion-based additively manufactured PEEK,” Proc. Manuf., Vol.48 pp. 737-742, doi: 10.1016/j.promfg.2020.05.107, 2020.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024