IJAT Vol.16 No.4 pp. 471-477
doi: 10.20965/ijat.2022.p0471

Technical Paper:

Development of Bipolar Electrostatic Chuck with a Beam-Array Assembly Fabricated by Lithography

Yuki Taoka, Kohei Kawabata, Pasomphone Hemthavy, Seungman Choi, Kunio Takahashi, and Shigeki Saito

School of Environment and Society, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Corresponding author

November 29, 2021
March 15, 2022
July 5, 2022
electrical properties, adhesional force, microelectromechanical systems (MEMS), deep reactive-ion etching (DRIE), electrostatic chuck (ESC)

This technical paper demonstrates the influence of the probe-tip surface smoothness of a bipolar electrostatic chuck (ESC) on electrostatic force. ESC, which has a silicon-based beam-array microstructure, aims to pick and place a dielectric object with a curved surface owing to the compliance of its elastically deformable beams. The ESC was fabricated using a lithography technique, specifically deep reactive ion etching (DRIE), to smooth the surface of the beam tip. The surface roughness of the beam tips was observed using a field-emission scanning electron microscope (FE-SEM), and the adhesional force was experimentally evaluated. The results show that by the smoothing process, the adhesional force per unit area is significantly increased compared to the previous study reported by Choi (one of the authors). This suggests that the proposed bipolar ESC device has great potential for use in various industries.

Cite this article as:
Y. Taoka, K. Kawabata, P. Hemthavy, S. Choi, K. Takahashi, and S. Saito, “Development of Bipolar Electrostatic Chuck with a Beam-Array Assembly Fabricated by Lithography,” Int. J. Automation Technol., Vol.16, No.4, pp. 471-477, 2022.
Data files:
  1. [1] R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y. S. Kim, W. H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, and J. A. Rogers, “Ultrathin conformal devices for precise and continuous thermal characterisation of human skin,” Nature Materials, Vol.12, Issue 10, pp. 938-944, 2013.
  2. [2] D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K. Y. Suh, T. Kim, and M. Choi, “Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system,” Nature, Vol.516, Issue 7530, pp. 222-226, 2014.
  3. [3] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, “A review of wearable sensors and systems with application in rehabilitation,” J. of NeuroEngineering and Rehabilitation, Vol.9, No.21, 21, 2012.
  4. [4] H. Kudo, T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki, and K. Mitsubayashi, “A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques,” Biosensors and Bioelectronics, Vol.22, No.4, pp. 558-562, 2006.
  5. [5] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft Robotics for Chemists,” Angewandte Chemie Int. Edition, Vol.50, Issue 8, pp. 1890-1895, 2011.
  6. [6] J. R. Amend, E. Brown, N. Rodenberg, H. M. Jaeger, and H. Lipson, “A Positive Pressure Universal Gripper Based on the Jamming of Granular,” Material Trans. Rob., Vol.28, No.2, pp. 341-350, 2012.
  7. [7] E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R. Zakin, H. Lipson, and H. M. Jaeger, “Universal robotic gripper based on the jamming of granular material,” PNAS, Vol.107, No.44, pp. 18809-18814, 2010.
  8. [8] K. Yatsuzuka, F. Hatakeyama, K. Asano, and S. Aonuma, “Fundamental characteristics of electrostatic wafer chuck with insulating sealant,” IEEE Trans. on Industry Applications, Vol.36, No.2, pp. 510-516, 2000.
  9. [9] S. Qin and A. McTeer, “Wafer dependence of Johnsen-Rahbek type electrostatic chuck for semiconductor processes,” J. of Applied Physics, Vol.102, Issue 6, 064901, 2007.
  10. [10] N. Moronuki, “Functional Texture Design and Texturing Processes,” Int. J. Automation Technol., Vol.10, No.1, pp. 4-15, 2016.
  11. [11] S. Yamada, R. Koike, S. Arano, Y. Kakinuma, and T. Aoyama, “Basic Study on Electro-Adhesive Surface Applying 3-Dimensional Micro Structures,” Int. J. Automation Technol., Vol.10, No.1, pp. 48-54, 2016.
  12. [12] J. Tsuchiya, G. Nakagawa, S. Hiwasa, and J. Taniguchi, “Improvement of Transfer Durability of a Pillar-Shaped Release-Agent-Free Replica Mold in Ultraviolet Nanoimprint Lithography,” Int. J. Automation Technol., Vol.12, No.5, pp. 723-729, 2018.
  13. [13] J. Berengueres, M. Urago, S. Saito, K. Tadakuma, and H. Meguro, “Gecko inspired Electrostatic Chuck,” Proc. of the 2006 IEEE Int. Conf. on Robotics and Biomimetics, pp. 1018-1023, 2006.
  14. [14] S. Saito, F. Soda, R. Dhelika, K. Takahashi, W. Takarada, and T. Kikutani, “Compliant electrostatic chuck based on hairy microstructure,” Smart Materials and Structures, Vol.22, No.1, 015019, 2012.
  15. [15] R. Dhelika, P. Hemthavy, K. Takahashi, and S. Saito, “Compliant bipolar electrostatic gripper with micropillar electrodes array for manipulation at macroscale,” Smart Materials and Structures, Vol.25, No.5, 055037, 2016.
  16. [16] S. Choi, K. Wakabayashi, K. Takahashi, and S. Saito, “Development of a bipolar electrostatic chuck module with a beam-array assembly using the multiple etching process,” J. Micromech. Microeng., Vol.28, No.12, 125011, 2018.
  17. [17] P. Hemthavy, K. Kudo, K. Kawano, K. Takahashi, and S. Saito, “Compliant bipolar electrostatic gripper using 3D-printed-layered elastic probes,” Eng. Res. Express, Vol.2, No.1, 015013, 2020.
  18. [18] TOTO, “Electrostatic Chucks.” [Accessed March 11, 2022]
  19. [19] A. Johnsen and K. Rahbek, “A physical phenomenon and its applications to telegraphy, telephony, etc.,” J. of the Institution of Electrical Engineers, Vol.61, Issue 320, pp. 713-725, 1923.
  20. [20] R. Atkinson “A simple theory of the Johnsen-Rahbek effect,” J. of Physics D: Applied Physics, Vol.2, No.3, pp. 325-332, 1969.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Aug. 05, 2022