single-au.php

IJAT Vol.15 No.5 pp. 696-705
doi: 10.20965/ijat.2021.p0696
(2021)

Paper:

Design, Fabrication, and Performance Analysis of a Vertically Suspended Soft Manipulator

Mohamed Tahir Shoani*, Mohamed Najib Ribuan*,†, and Ahmad Athif Mohd Faudzi**,***

*Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM)
Parit Raja, Batu Pahat, Johor 86400, Malaysia

Corresponding author

**School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia

***Center for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia (UTM), Kuala Lumpur, Malaysia

Received:
October 9, 2020
Accepted:
December 21, 2020
Published:
September 5, 2021
Keywords:
soft robotics, tendon-driven, continuum structures, manipulator
Abstract

Soft continuum manipulators are comprised of flexible materials in a serpentine shape. Such manipulators can be controlled mechanically through tendons or pneumatic muscles. Continuum manipulators utilizing tendons are traditionally formed in a thick cross section, which presents limitations in achieving a high bending range as well as difficulties for storage and transportation. This study introduces a continuum manipulator comprised of two thin plastic bands and driven by a tendon to provide a bending action. The manipulator’s thin body form enables it to be rolled up for storage and transportation. Experimental results on different section lengths show the possibility of achieving a horizontal displacement of up to 34% of the bending-segment’s length, and a full closed-loop curvature for most segments. However, the results also indicated an elongation of the tip paths owing to gravity. These results, in addition to the manipulator’s flexibility and light weight features, confirm its suitability for applications in space and underwater environments.

Cite this article as:
M. Shoani, M. Ribuan, and A. Faudzi, “Design, Fabrication, and Performance Analysis of a Vertically Suspended Soft Manipulator,” Int. J. Automation Technol., Vol.15 No.5, pp. 696-705, 2021.
Data files:
References
  1. [1] C. Lee et al., “Soft robot review,” Int. J. of Control, Automation and Systems, Vol.15, No.1, pp. 3-15, doi: 10.1007/s12555-016-0462-3, 2017.
  2. [2] M. N. Ribuan, S. Wakimoto, K. Suzumori, and T. Kanda, “Omnidirectional soft robot platform with flexible actuators for medical assistive device,” Int. J. Automation Technol., Vol.10, No.4, pp. 494-502, doi: 10.20965/ijat.2016.p0494, 2016.
  3. [3] L. A. T. Al Abeach, S. Nefti-Meziani, and S. Davis, “Design of a Variable Stiffness Soft Dexterous Gripper,” Soft Robotics, Vol.4, No.3, pp. 274-284, doi: 10.1089/soro.2016.0044, 2017.
  4. [4] K. Batsuren and D. Yun, “Soft robotic gripper with chambered fingers for performing in-hand manipulation,” Applied Sciences, Vol.9, No.15, 2967, doi: 10.3390/app9152967, 2019.
  5. [5] I. D. Walker, “Continuous Backbone ‘Continuum’ Robot Manipulators,” ISRN Robotics, Vol.2013, pp. 1-19, doi: 10.5402/2013/726506, 2013.
  6. [6] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida, “Soft manipulators and grippers: A review,” Frontiers in Robotics and AI, Vol.3, doi: 10.3389/frobt.2016.00069, 2016.
  7. [7] T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control Strategies for Soft Robotic Manipulators: A Survey,” Soft Robotics, Vol.5, No.2, pp. 149-163, doi: 10.1089/soro.2017.0007, 2018.
  8. [8] E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura, “A soft robot that navigates its environment through growth,” Science Robotics, Vol.2, No.8, pp. 1-8, doi: 10.1126/scirobotics.aan3028, 2017.
  9. [9] B. L. Conrad and M. R. Zinn, “Interleaved continuum-rigid manipulation: An approach to increase the capability of minimally invasive surgical systems,” IEEE/ASME Trans. Mechatronics, Vol.22, No.1, pp. 29-40, doi: 10.1109/TMECH.2016.2608742, 2017.
  10. [10] J. H. Hsiao, J. Y. Chang, and C. M. Cheng, “Soft medical robotics: clinical and biomedical applications, challenges, and future directions,” Advanced Robotics, Vol.33, No.21, pp. 1099-1111, doi: 10.1080/01691864.2019.1679251, 2019.
  11. [11] A. A. M. Faudzi, N. H. I. Mat Lazim, and K. Suzumori, “Modeling and force control of thin soft McKibben actuator,” Int. J. Automation Technol., Vol.10, No.4, pp. 487-493, doi: 10.20965/ijat.2016.p0487, 2016.
  12. [12] I. De Falco, M. Cianchetti, and A. Menciassi, “A soft multi-module manipulator with variable stiffness for minimally invasive surgery,” Bioinspiration and Biomimetics, Vol.12, No.5, 056008, doi: 10.1088/1748-3190/aa7ccd, 2017.
  13. [13] L. H. Blumenschein, L. T. Gan, J. A. Fan, A. M. Okamura, and E. W. Hawkes, “A Tip-Extending Soft Robot Enables Reconfigurable and Deployable Antennas,” IEEE Robotics and Automation Letters, Vol.3, No.2, pp. 949-956, doi: 10.1109/LRA.2018.2793303, 2018.
  14. [14] E. Y. Yarbasi and E. Samur, “Design and evaluation of a continuum robot with extendable balloons,” Mechanical Sciences, Vol.9, No.1, pp. 51-60, doi: 10.5194/ms-9-51-2018, 2018.
  15. [15] J. O. Alcaide, L. Pearson, and M. E. Rentschler, “Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin,” Proc. of the 2017 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 4338-4345, doi: 10.1109/ICRA.2017.7989500, 2017.
  16. [16] J. E. Bernth, A. Arezzo, and H. Liu, “A novel robotic meshworm with segment-bending anchoring for colonoscopy,” IEEE Robotics and Automation Letters, Vol.2, No.3, pp. 1718-1724, doi: 10.1109/LRA.2017.2678540, 2017.
  17. [17] A. Vandini, C. Bergeles, B. Glocker, P. Giataganas, and G. Z. Yang, “Unified Tracking and Shape Estimation for Concentric Tube Robots,” IEEE Trans. on Robotics, Vol.33, No.4, pp. 901-915, doi: 10.1109/TRO.2017.2690977, 2017.
  18. [18] J. Ha, F. C. Park, and P. E. Dupont, “Optimizing Tube Precurvature to Enhance the Elastic Stability of Concentric Tube Robots,” IEEE Trans. on Robotics, Vol.33, No.1, pp. 22-37, doi: 10.1109/TRO.2016.2622278, 2017.
  19. [19] A. K. Mishra, E. Del Dottore, A. Sadeghi, A. Mondini, and B. Mazzolai, “SIMBA: Tendon-driven modular continuum arm with soft reconfigurable gripper,” Frontiers in Robotics and AI, Vol.4, 4, doi: 10.3389/frobt.2017.00004, 2017.
  20. [20] Z. Zhang, J. Dequidt, J. Back, H. Liu, and C. Duriez, “Motion Control of Cable-Driven Continuum Catheter Robot Through Contacts,” IEEE Robotics and Automation Letters, Vol.4, No.2, pp. 1852-1859, doi: 10.1109/LRA.2019.2898047, 2019.
  21. [21] M. M. Tonapi, I. S. Godage, A. M. Vijaykumar, and I. D. Walker, “A novel continuum robotic cable aimed at applications in space,” Advanced Robotics, Vol.29, No.13, pp. 861-875, doi: 10.1080/01691864.2015.1036772, 2015.
  22. [22] I. A. Gravagne and I. D. Walker, “Manipulability, Force, and Compliance Analysis for Planar Continuum Manipulators,” IEEE Trans. on Robotics and Automation, Vol.18, Issue 3, pp. 263-273, doi: 10.1109/TRA.2002.1019457, 2002.
  23. [23] S. Tully, A. Bajo, G. Kantor, H. Choset, and N. Simaan, “Constrained filtering with contact detection data for the localization and registration of continuum robots in flexible environments,” Proc. of the 2012 IEEE Int. Conf. on Robotics and Automation, pp. 3388-3394, doi: 10.1109/ICRA.2012.6225080, 2012.
  24. [24] A. D. Marchese and D. Rus, “Design, kinematics, and control of a soft spatial fluidic elastomer manipulator,” The Int. J. of Robotics Research, Vol.35, No.7, pp. 840-869, doi: 10.1177/0278364915587925, 2016.
  25. [25] M. Hwang and D. S. Kwon, “Strong Continuum Manipulator for Flexible Endoscopic Surgery,” IEEE/ASME Trans. Mechatronics, Vol.24, No.5, pp. 2193-2203, doi: 10.1109/TMECH.2019.2932378, 2019.
  26. [26] A. A. Faudzi, N. I. Azmi, M. Sayahkarajy, W. L. Xuan, and K. Suzumori, “Soft manipulator using thin McKibben actuator,” Proc. of the 2018 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM), pp. 334-339, doi: 10.1109/AIM.2018.8452698, 2018.
  27. [27] A. K. Mishra, A. Mondini, E. Del Dottore, A. Sadeghi, F. Tramacere, and B. Mazzolai, “Modular continuum manipulator: Analysis and characterization of its basic module,” Biomimetics, Vol.3, No.1, 3, doi: 10.3390/biomimetics3010003, 2018.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024