IJAT Vol.14 No.5 pp. 700-712
doi: 10.20965/ijat.2020.p0700


Digital Twin of Artifact Systems: Models Assimilated with Monitoring Data from Material Microstructures to Social Systems

Taira Okita*,†, Tomoya Kawabata*, Hideaki Murayama**, Nariaki Nishino*, and Masaatsu Aichi**

*School of Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Corresponding author

**Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

March 25, 2020
July 13, 2020
September 5, 2020
multiscale modelling, inspection, adaptive development, service, co-creation

In contemporary society, where changes in the environment surrounding artifacts as well as changes in the purpose and operating conditions of artifacts occur frequently, it is necessary to equip artifacts with resilience and plasticity, and to incorporate this knowledge in the succeeding generation of artifacts. For this purpose, we propose digital twin of artifact systems (DTAS) that focuses on structural materials, from their microstructure to the environment and social systems in which the artifacts are used. The realization of DTAS requires the development of modelling and monitoring technologies from the atomic scale to the social system, the development of technologies to operate these technologies in multiscale in an integrated way, and the development of technologies for model uncertainty assessment. In the future, the information on models and monitoring of artifact systems stored in DTAS is expected to be shared and utilized not only by designers but also among various stakeholders, contributing to the realization of a framework for co-creative development and consensus building through interaction between designers and users.

Cite this article as:
T. Okita, T. Kawabata, H. Murayama, N. Nishino, and M. Aichi, “Digital Twin of Artifact Systems: Models Assimilated with Monitoring Data from Material Microstructures to Social Systems,” Int. J. Automation Technol., Vol.14, No.5, pp. 700-712, 2020.
Data files:
  1. [1] K. Ueda, A. Markus, L. Monostori, H. J. J. Kals, and T. Arai, “Emergent synthesis methodologies for manufacturing,” CIRP Annals, Vol.50, No.2, pp. 535-551, doi 10.1016/S0007-8506(07)62994-1, 2001.
  2. [2] R. Ahmadi and R. H. Wang, “Managing development risk in product design processes,” Oper. Res., Vol.47, No.2, pp. 235-246, doi 10.1287/opre.47.2.235, 1999.
  3. [3] F. Behnamfar and M. Afshari, “Collapse analysis and strengthening of stone arch bridges against earthquake,” Int. J. Archit. Heritage., Vol.7, No.1, pp. 1-25, doi 10.1080/15583058.2011.606594, 2013.
  4. [4] S. Pavlou and V. Manthou, “Identifying and evaluating unexpected events as sources of supply chain risk,” IJSOM, Vol.4, No.5, pp. 604-617, doi 10.1504/IJSOM.2008.018004, 2008.
  5. [5] F. Tao, Q. Qi, L. Wang, and A. Y. C. Nee, “Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: correlation and comparison,” Engineering, Vol.5, pp. 653-661, doi 10.1016/j.eng.2019.01.014, 2019.
  6. [6] T. Grubic and I. Jennions, “Do outcome-based contracts exist? The investigation of power-by-the-hour and similar result-oriented cases,” Int. J. Prod. Econ., Vol.206, pp. 209-219, doi 10.1016/j.ijpe.2018.10.004, 2018.
  7. [7] T. Kaihara, N. Nishino, K. Ueda, M. Tseng, J. Váncza, P. Schönsleben, R. Teti, and T. Takenaka, “Value creation in production: Reconsideration from interdisciplinary approaches,” CIRP Annals, Vol.67, No.2, pp. 791-813, doi 10.1016/j.cirp.2018.05.002, 2018.
  8. [8] The office report of The Fukushima Nuclear Accident Independent Investigation Commission. [Accessed May 21, 2020]
  9. [9] Fukushima Nuclear Accident Analysis Report. [Accessed May 21, 2020]
  10. [10] V. V. Bulatov, L. L. Hsiung, M. Tang, A. Arsenlis, M. C. Bartelt, W. Cai, J. N. Florando, M. Hiratani, M. Rhee, G. Hommes, T. G. Pierce, and T. Diaz de la Rubia, “Dislocation multi-junctions and strain hardening,” Nature, Vol.440, pp. 1174-1178, doi 10.1038/nature04658, 2006.
  11. [11] T. Okita and M. Itakura, “Computational modeling of the behavior of nuclear materials (2); Molecular simulations for nuclear materials – current situation and future perspective –,” Atomos, Vol.59, No.12, doi 10.3327/jaesjb.59.12_71, pp. 712-716, 2017.
  12. [12] P. Hess, S. Aksu, M. Vaz, G. Feng, L. Li, P. Jurisic, M. R. Andersen, P. Caridis, D. Boote, H. Murayama, N. Amila, B. Leira, M. Tammer, J. Blake, N. Chen, and A. Egorov, “Structural Longevity,” Proc. of the 20th Int. Ship and Offshore Structures Congress (ISSC 2018), Vol.2, pp. 391-460, doi 10.3233/978-1-61499-864-8-391, 2018.
  13. [13] M. Grieves, “Digital twin: manufacturing excellence through virtual factory replication,” White Paper M. W. Grieves, LLC, 2014.
  14. [14] F. Tao, J. Cheng, Q. Qi, M. Zhang, and H. Zhang, “Digital twin-driven product design, manufacturing and service with big data,” Int. J. Manuf. Tech., Vol.94, pp. 3563-3576, doi 10.1007/s00170-017-0233-1, 2018.
  15. [15] B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, “Shaping the digital twin for design and production engineering,” CIRP Annals, Vol.66, No.1, pp. 141-144, doi 10.1016/j.cirp.2017.04.040, 2017.
  16. [16] T. H. J. Uhlemann, C. Lehmann, and R. Steinhilper, “The digital twin: realizing the cyber-physical production system for industry 4.0,” Procedia CIRP, Vol.61, pp. 335-340, doi 10.1016/j.procir.2016.11.152, 2017.
  17. [17] T. Okita, T. Kawabata, H. Murayama, N. Nishino, and M. Aichi, “A new concept of digital twin of artifact systems: synthesizing monitoring/inspections, physical/numerical models, and social system models,” Procedia CIRP, Vol.79, pp. 667-672, doi 10.1016/j.procir.2019.02.048, 2019.
  18. [18] T. Okita, T. Kamada, and N. Sekimura, “Effects of dose rate on microstructural evolution and swelling in austenitic steels under irradiation,” J. Nucl. Mater., Vol.283-287, pp. 220-223, doi 10.1016/S0022-3115(00)00355-X, 2000.
  19. [19] F. A. Garner, D. S. Gelles, L. R. Greenwood, T. Okita, N. Sekimura, and W. G. Wolfer, “Synergistic influence of displacement rate and helium/dpa ratio on swelling of Fe-(9, 12)Cr binary alloys in FFTF at ∼400C,” J. Nucl. Mater., Vol.329-333, pp. 1008-1012, doi 10.1016/j.jnucmat.2004.04.346, 2004.
  20. [20] T. Okita, W. G. Wolfer, F. A. Garner, and N. Sekimura, “Influence of boron on void swelling in model austenitic steels,” J. Nucl. Mater., Vol.329-333, pp. 1013-1016, doi 10.1016/j.jnucmat.2004.04.126, 2004.
  21. [21] T. Okita, W. G. Wolfer, F. A. Garner, and N. Sekimura, “Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling,” Philos. Mag., Vol.85, pp. 2033-2048, doi 10.1080/14786430412331331871, 2005.
  22. [22] T. Okita, T. Sato, N. Sekimura, T. Iwai, and F. A. Garner, “The synergistic influence of temperature and displacement rate on microstructural evolution of ion-irradiated Fe-15Cr-16Ni model austenitic alloy,” J. Nucl. Mater., Vol.367-370, pp. 930-934, doi 10.1016/j.jnucmat.2007.03.061, 2007.
  23. [23] Y. Isobe, M. Sagisaka, F. A. Garner, S. Fujita, and T. Okita, “Precipitate evolution in low-nickel austenitic stainless steels during neutron irradiation at very low dose rates,” J. Nucl. Mater., Vol.386-388, pp. 661-665, doi 10.1016/j.jnucmat.2008.12.255, 2009.
  24. [24] S. Miyashiro, S. Fujita, and T. Okita, “MD simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure Cu,” J. Nucl. Mater., Vol.415, pp. 1-4, doi 10.1016/j.jnucmat.2011.03.056, 2011.
  25. [25] S. Miyashiro, S. Fujita, T. Okita, and H. Okuda, “MD simulations to evaluate the influence of normal strain on defect production at various PKA energies,” Fusion. Eng. Des., pp. 1352-1355, doi 10.1016/j.fusengdes.2012.03.012, 2012.
  26. [26] T. Okita, Y. Yang, J. Hirabayashi, M. Itakura, and K. Suzuki, “Effects of stacking fault energy on defect formation process in face-centred cubic metals,” Philos. Mag., Vol.96, pp. 1579-1597, doi 10.1080/14786435.2016.1171415, 2016.
  27. [27] D. Nakanishi, T. Kawabata, K. Doihara, T. Okita, M. Itakura, and K. Suzuki, “Effects of stacking fault energies on formation of irradiation-induced defects at various temperatures in face-centred cubic metals,” Philos. Mag., Vol.98, pp. 3031-3047, doi 10.1080/14786435.2018.1515507, 2018.
  28. [28] T. M. Apple, J. H. Cantrell, C. M. Amaro, C. R. Mayer, W. T. Yost, S. R. Agnew, and J. M. Howe, “Acoustic harmonic generation from fatigue-generated dislocation substructures in copper single crystals,” Philos. Mag., Vol.93, pp. 2802-2825, doi 10.1080/14786435.2013.789144, 2013.
  29. [29] Y. Cai, J. Z. Sun, C. J. Liu, S. W. Ma, and X. I. Wei, “Relationship between dislocation density in P91 steel and its nonlinear ultrasonic parameter,” J. Iron Steel Res. Int., Vol.22, pp. 1024-1030, doi 10.1016/S1006-706X(15)30107-2, 2015.
  30. [30] J. Etoh, M. Sagisaka, T. Matsunaga, Y. Isobe, F. A. Garner, P. D. Freyer. Y. Huang, J. M. K. Wiezorek, and T. Okita, “Development of a non-destructive inspection method for irradiation-induced microstructural evolution of thick 304 stainless steel blocks,” J. Nucl. Mater., Vol.440, pp. 500-507, doi 10.1016/j.jnucmat.2013.02.036, 2013.
  31. [31] J. Etoh, M. Sagisaka, T. Matsunaga, Y. Isobe, and T. Okita, “A simulation model of ultrasonic wave changes due to irradiation-induced microstructural evolution of thick 304 stainless steel blocks,” J. Nucl. Mater., Vol.441, pp. 503-509, doi 10.1016/j.jnucmat.2013.07.007, 2013.
  32. [32] T. Okita, J. Etoh, M. Sagisaka, T. Matsunaga, Y. Isobe. P. D. Freyer, Y. Huang, J. M. K. Wieozorek, and F. A. Garner, “Validation of ultrasonic velocity measurement for detecting void swelling in first-wall structural materials,” Fusion Sci. Tech., Vol.66, No.1, pp. 77-82, doi 10.1115/ICONE22-30859, 2014.
  33. [33] Y. Huang, J. M. K. Wiezorek, F. A. Garner, P. D. Freyer, T. Okita, M. Sagisaka, Y. Isobe, and T. R. Allen, “Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II,” J. Nucl. Mater., Vol.465, pp. 516-530, doi 10.1016/j.jnucmat.2015.06.031, 2015.
  34. [34] N. Sekimura, T. Kamada, Y. Wakasugi, T. Okita, and Y. Arai, “Evaluation of radiation hardening in Fe alloys under heavy ion irradiation by micro-indentation technique,” J. Nucl. Mater., Vols.307-311, pp. 308-311, doi 10.1016/S0022-3115(02)01079-6, 2002.
  35. [35] E. M. Rabenberg, B. J. Jaques, B. H. Sencer, F. A. Garner, P. D. Freyer, T. Okita, and D. P. Butt, “Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28 dpa,” J. Nucl. Mater., Vol.448, pp. 315-324, doi 10.1016/j.jnucmat.2014.02.018, 2014.
  36. [36] W. G. Wolfer, T. Okita, and D. M. Barnett, “Motion and rotation of small glissile dislocation loops in stress fields,” Phys. Rev. Lett., Vol.92, No.8, 085507, doi 10.1103/PhysRevLett.92.085507, 2004.
  37. [37] T. Okita and W. G. Wolfer, “A critical test of the classical rate theory for void swelling,” J. Nucl. Mater., Vol.327, pp. 130-139, doi 10.1016/j.jnucmat.2004.01.026, 2004.
  38. [38] T. Okita, S. Hayakawa, M. Itakura, M. Aichi, S. Fujita, and K. Suzuki, “Conservative climb motion of a cluster of self-interstitial atoms toward an edge dislocation in BCC-Fe,” Acta Mater., Vol.118, pp. 342-349, doi 10.1016/j.actamat.2016.08.003, 2016.
  39. [39] S. Hayakawa, T. Okita, M. Itakura, M. Aichi, and K. Suzuki, “Interactions between clusters of self-interstitial atoms via a conservative climb in BCC-Fe,” Philos. Mag., Vol.98, pp. 2311-2324, doi 10.1080/14786435.2018.1486047, 2018.
  40. [40] S. Fujita, “Effects of nanoscale deformation mechanism on structural reliability,” Doctoral thesis, The University of Tokyo, 2010.
  41. [41] S. Rao, “The finite element method in engineering,” 6th Ed., Elsevier, p. 78, 2018.
  42. [42] Q. Liu Q, T. Tokunaga, and Z. He, “Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique,” Opt. Lett., Vol.37, No.3, pp. 434-436, doi 10.1364/OL.37.000434, 2012.
  43. [43] S. Chen, D. F. Laefer, E. Mangina, S. M. I. Zolanvari, and J. Byrne, “UAV bridge inspection through evaluated 3D reconstructions,” J. Bridge Eng., Vol.24, No.4, 05019001, doi 10.1061/(ASCE)BE.1943-5592.0001343, 2019.
  44. [44] T. Omar and M. L. Nehdi, “Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography,” Automat. Constr., Vol.83, pp. 360-371, doi 10.1016/j.autcon.2017.06.024, 2017.
  45. [45] B. Raphael, A. Harichandran, “Sensor data interpretation in bridge monitoring – a case study,” Front. Built Environ., Vol.15, Article 148, 2020.
  46. [46] T. Tomiyama, “Service engineering to intensify service contents in product life cycles,” Proc. of EcoDesign 2001, IEEE Computer Society, pp. 613-618, doi 10.1109/ECODIM.2001.992433, 2001.
  47. [47] Y. Shimomura and T. Tomiyama, “Service modelling for service engineering,” Proc. of The 5th Int. Conf. on Design of Information Infrastructure Systems for Manufacturing 2002 (DIISM2002), pp. 309-316, 2002.
  48. [48] T. Sakaoa and Y. Shimomura, “Service engineering: a novel engineering discipline for producers to increase value combining service and product,” J. Clean. Prod., Vol.15, No.6, pp. 590-604, doi 10.1016/j.jclepro.2006.05.015, 2007.
  49. [49] T. Arai and Y. Shimomura, “Proposal of service CAD system – a tool for service engineering –,” CIRP Annals, Vol.53, No.1, pp. 397-400, doi 10.1016/S0007-8506(07)60725-2, 2004.
  50. [50] T. Arai and Y. Shimomura, “Service CAD system – evaluation and quantification,” CIRP Annals, Vol.54, No.1, pp. 463-466, doi 10.1016/S0007-8506(07)60145-0, 2005.
  51. [51] T. Fukuhara, R. Tenmoku, T. Okuma, R. Ueoka, M. Takehara, and T. Kurata, “Improving service processes based on visualization of human-behavior and POS data: a case study in a Japanese restaurant,” M. Mochimaru, K. Ueda, and T. Takenaka (Eds), “Serviceology for Services, ICServ 2013,” Springer, pp. 3-13, doi 10.1007/978-4-431-54816-4_1, 2014.
  52. [52] J. von Neumann and O. Morgenstern, “Theory of games and economic behavior,” Princeton University Press, 1944.
  53. [53] L. Hurwicz, “On informationally decentralized systems,” C. B. McGuire and R. Radner (Eds.), “Decision and Organization,” pp. 297-336, North Holland Publishing Company, 1972.
  54. [54] D. Kahneman and A. Tversky, “Prospect theory: an analysis of decision under risk,” Econometrica, Vol.47, No.2, pp. 263-292, doi 10.1142/9789814417358_0006, 1979.
  55. [55] K. Asari, O. S. Hetland, S. Fujita, M. Itakura, and T. Okita, “The effect of stacking fault energy on interactions between an edge dislocation and a spherical void by molecular dynamics simulations,” J. Nucl. Mater., Vol.442, pp. 360-364, doi 10.1016/j.jnucmat.2013.05.076, 2013.
  56. [56] K. Doihara, T. Okita, M. Itakura, M. Aichi, and K. Suzuki, “Atomic simulations to evaluate effects of stacking fault energy on interactions between edge dislocation and spherical void in face-centred cubic metals,” Philos. Mag., Vol.98, pp. 2061-2076, doi 10.1080/14786435.2018.1472401, 2018.
  57. [57] S. Hayakawa, K. Doihara, T. Okita, M. Itakura, M. Aichi, and K. Suzuki, “Screw dislocation-spherical void interactions in fcc metals and their dependence on stacking fault energy,” J. Mater. Sci., Vol.54, Issue 17, pp. 11509-11525, doi 10.1007/s10853-019-03716-0, 2019.
  58. [58] L. F. Coffin Jr., “A study of the effects of cyclic thermal stresses on a ductile metal,” Trans. of the ASME, Vol.76, pp. 931-950, 1954.
  59. [59] E. Smith, “The nucleation and growth of cleavage fracture in high carbon bainite,” Mater. Sci. Eng. A, Vol.158, pp. 11-19, 1966.
  60. [60] J. L. Bassani, “Incompatibility and a simple gradient theory of plasticity,” J. Mech. Phys. Solids, Vol.49, pp. 1983-1996, doi 10.1016/S0022-5096(01)00037-0, 2001.
  61. [61] H. Kosuge, T. Kawabata, T. Okita, H. Murayama, and S. Takagi, “Establishment of damage estimation rule for brittle fracture after cyclic plastic prestrain in steel,” Mater. Design, Vol.185, 108222, doi 10.1016/j.matdes.2019.108222, 2020.
  62. [62] H. Murayama, “Structural Health Monitoring of Composite Materials Using Distributed Fiber-Optic Sensors,” G. Rajan and B. G. Prusty (Eds.), “Structural Health Monitoring of Composite Structures Using Fiber Optic Methods,” CRC Press, pp. 105-156, 2016.
  63. [63] X. Luo, “Study on methodology for running safety assessment of trains in seismic design of railway structures,” Soil Dynamics and Earthquake Engineering, Vol.25, Issue 2, pp. 79-91, doi 10.1016/j.soildyn.2004.10.005, 2005.
  64. [64] M. Kobayashi and H. Murayama, “Shape sensing for pipe structures by inverse finite element method based on distributed fiber-optic sensors,” 26th Int. Conf. on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America 2018), TuE99, doi 10.1364/OFS.2018.TuE99, 2018.
  65. [65] M. Kobayashi, T. Jumonji, and H. Murayama, “Three-dimensional shape sensing by inverse finite element method based on distributed fiber-optic sensors,” The 14th Int. Symp. on Practical Design of Ships and Other Floating Structures (PRADS 2019), T1-A-3, 2019.
  66. [66] Y. Fukasawa, N. Nishino, and Y. Kuriyama, “Analysis for effectiveness of bridge management plan focused on the economic value by multi-agent simulation,” Procedia CIRP, Vol.62, pp. 94-99, doi 10.1016/j.procir.2016.06.014, 2017.
  67. [67] Y. Fukasawa, Y. Kuriyama, N. Nishino, and K. Suzuki, “Optimization of bridge management plan considering the economic value using a multi-agent simulation,” Proc. of Asian Congress of Structural and Multidisciplinary Optimization (ACSMO 2016), 2D1-1, 2016.
  68. [68] E. Lidorikis, M. E. Bachlechner, R. K. Kalia, A. Nakano, and P. Vashishta, “Coupling atomistic and continuum length scales in heteroepitaxial systems: multiscale molecular-dynamics/finite-element simulations of strain relaxation in Si/Si3N4 nanopixels,” Phys. Rev. B, Vol.72, 115338, doi 10.1103/PhysRevB.72.115338, 2005.
  69. [69] H. Xu, Y. N. Osetsky, and R. E. Stoller, “Simulating complex atomistic processes: on-the-fly kinetic Monte Carlo scheme with selective active volumes,” Phys. Rev. B, Vol.84, 132103, doi 10.1103/PhysRevB.84.132103, 2011.
  70. [70] F. Pappenberger and J. Beven, “Ignorance is bliss: Or seven reasons not to use uncertainty analysis,” Water Resour. Res., Vol.42, No.5, W05302, doi 10.1029/2005WR004820, 2006.
  71. [71] M. C. Hill and C. R. Tiedeman, “Effective groundwater model calibration,” John Wiley & Sons, 2007.
  72. [72] J. Doherty, “Calibration and uncertainty analysis for complex environmental models,” Watermark Numerical Computing, p. 227, doi 10.1111/gwat.12360, 2015.
  73. [73] M. Aichi, “Land subsidence modelling for decision making on groundwater abstraction under emergency situation,” Proc. IAHS, Vol.97, pp. 1-6, doi 10.5194/piahs-382-403-2020, 2020.
  74. [74] K. Ueda, T. Takenaka, J. Vácza, and L. Monostori, “Value creation and decision-making in sustainable society,” CIRP Ann. – Manuf. Techn., Vol.58, No.2, pp. 681-700, doi 10.1016/j.cirp.2009.09.010, 2009.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 01, 2020