single-au.php

IJAT Vol.14 No.4 pp. 654-664
doi: 10.20965/ijat.2020.p0654
(2020)

Paper:

Measurement and Compensation of Tool Contour Error Using White Light Interferometry for Ultra-Precision Diamond Turning of Freeform Surfaces

Kodai Nagayama and Jiwang Yan

Department of Mechanical Engineering, Faculty of Science and Technology, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

Corresponding author

Received:
January 31, 2020
Accepted:
April 20, 2020
Published:
July 5, 2020
Keywords:
freeform surface, ultra-precision cutting, form error compensation, diamond tool, white light interferometry
Abstract

In ultra-precision diamond turning of freeform optics, it is necessary to obtain submicron-level form accuracy with high efficiency. In this study, we proposed a new method for the quick measurement and compensation of tool contour errors to improve the form accuracy of the workpiece. In this method, the nanometer-scale contour error of a diamond tool is quickly and precisely measured using a white light interferometer and then compensated for, before machining. Results showed that the contour of a diamond tool was measured with an error less than 0.05 μm peak-to-valley (P-V) and the feasibility of error compensation was verified through cutting experiments to create a paraboloid mirror and a microlens array. The form error decreased to 0.2 μm P-V regardless of the contour error of the diamond tools when cutting the paraboloid mirror, and that of the microlens array was reduced to 0.15 μm P-V during a single machining step.

Cite this article as:
K. Nagayama and J. Yan, “Measurement and Compensation of Tool Contour Error Using White Light Interferometry for Ultra-Precision Diamond Turning of Freeform Surfaces,” Int. J. Automation Technol., Vol.14, No.4, pp. 654-664, 2020.
Data files:
References
  1. [1] F. Z. Fang, X. D. Zhang, and X. T. Hu, “Cylindrical coordinate machining of optical freeform surfaces,” Opt. Express, Vol.16, No.10, pp. 7323-7329, 2008.
  2. [2] L. De Chiffre, H. Kunzmann, G. N. Peggs, and D. A. Lucca, “Surfaces in Precision Engineering, Microengineering and Nanotechnology,” CIRP Ann., Vol.52, No.2, pp. 561-577, 2003.
  3. [3] F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Ann. Manuf. Technol., Vol.62, No.2, pp. 823-846, 2013.
  4. [4] X. Jiang, P. Scott, and D. Whitehouse, “Freeform Surface Characterisation – A Fresh Strategy,” CIRP Ann., Vol.56, No.1, pp. 553-556, 2007.
  5. [5] H. N. Hansen, K. Carneiro, H. Haitjema, and L. De Chiffre, “Dimensional Micro and Nano Metrology,” CIRP Ann., Vol.55, No.2, pp. 721-743, 2006.
  6. [6] M. Weck, J. Hennig, and R. Hilbing, “Precision Cutting Processes for Manufacturing of Optical Components,” Proc. SPIE, Vol.4440, pp. 145-151, 2001.
  7. [7] W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng., Vol.27, No.3, pp. 289-298, 2003.
  8. [8] W. Gao, M. Tano, T. Araki, and S. Kiyono, “Precision Fabrication of a Large-Area Sinusoidal Surface Using a Fast-Tool-Servo Technique – Improvement of Local Fabrication Accuracy –,” JSME Int. J. C. Mech. Syst. Machine. Elements. Manuf., Vol.49, No.4, pp. 1203-1208, 2006.
  9. [9] J. Yan, H. Baba, Y. Kunieda, N. Yoshihara, and T. Kuriyagawa, “Nano precision on-machine profiling of curved diamond cutting tools using a white-light interferometer,” Int. J. Surface Sci. Eng., Vol.1, No.4, pp. 441-445, 2007.
  10. [10] Z. Q. Yin, Y. F. Dai, S. Y. Li, C. L, Guan, and G. P. Tie, “Fabrication of off-axis aspheric surfaces using a slow tool servo,” Int. J. Mach. Tools Manuf., Vol.51, No.5, pp. 404-410, 2011.
  11. [11] D. P. Yu, S. W. Gan, Y. S. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol., Vol.63, Nos.9-12, pp. 1137-1152, 2012.
  12. [12] M. Zhou, H. J. Zhang, and S. J. Chen, “Study on Diamond Cutting of Nonrationally Symmetric Microstructured Surfaces with Fast Tool Servo,” Mat. Manuf. Processes, Vol.25, No.6, pp. 488-494, 2010.
  13. [13] A. Weckenmann, G. Peggs, and J. Hoffmann, “Probing systems for dimensional micro- and nano-metrology,” Meas. Sci. Technol., Vol.17, No.3, pp. 504-509, 2006.
  14. [14] Y.-F. Dai, C. Guan, Z.-Q. Yin, G.-P. Tie, H.-F. Chen, and J.-M. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” Proc. SPIE, Vol.7655, pp. 76550P1-76550P8, 2017.
  15. [15] C.-C. Chen, C.-Y. Huang, W.-J. Peng, Y.-C. Cheng, Z.-R. Yu, and W.-Y. Hsu, “Freeform surface machining error compensation method for ultra-precision slow tool servo diamond turning,” Proc. SPIE, Vol.8838, pp. 88380Y1-88380Y8, 2013.
  16. [16] V. Mishra, D. R. Burada, K. K. Pant, V. Karar, S. Jha, and G. S. Khan, “Form error compensation in the slow tool servo machining of freeform optics,” Int. J. Adv. Manuf. Technol., Vol.105, Nos.1-4, pp. 1623-1635, 2019.
  17. [17] T. Hirose, Y. Kami, T. Shimizu, M. Yabuya, and Y. Morimoto, “Development of On-Machine Measurement Unit for Correction Processing of Aspheric Lens Mold with High Numerical Aperture,” Int. J. Automation Technol., Vo.8, No.1, pp. 34-42, 2014.
  18. [18] H. Ohmori, Y. Watanabe, W. M. Lin, K. Katahira, and T. Suzuki, “An Ultraprecision On-Machine Measurement System,” Key. Eng. Mat., Vol.295-296, pp. 375-380, 2005.
  19. [19] W. Gao, J. Aoki, B.-F. Ju, and S. Kiyono, “Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine,” Precis. Eng., Vol.31, No.3, pp. 304-309, 2007.
  20. [20] X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express, Vol.23, No.19, pp. 24800-24810, 2015.
  21. [21] F. J. Chen, S. H. Yin, H. Huang, H. Ohmori, Y. Wang, Y. F. Fan, and Y. J. Zhu, “Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement,” Int. J. Mach. Tools Manuf., Vol.50, No.5, pp. 480-486, 2010.
  22. [22] W. B. Lee, C. F. Cheung, W. M. Chiu, and T. P. Leung, “An investigation of residual form error compensation in the ultra-precision machining of aspheric surfaces,” Int. J. Mat. Process. Technol., Vol.99, Nos.1-3, pp. 129-134, 2000.
  23. [23] T. Asai, S. Ferdous, Y. Arai, Y. Yang, and W. Gao, “On-Machine Measurement of Tool Cutting Edge Profiles,” Int. J. Automation Technol., Vol.3, No.4, pp. 408-414, 2009.
  24. [24] X. P. Li, M. Rahman, K. Liu, K. S. Neo, and C. C. Chan, “Nano-precision measurement of diamond tool edge radius for wafer fabrication,” Int. J. Mat. Process. Technol., Vol.140, Nos.1-3, pp. 358-362, 2003.
  25. [25] W. Gao, T. Asai, and Y. Arai, “Precision and fast measurement of 3D cutting edge profiles of single point diamond micro-tools,” CIRP Ann. Manuf. Technol., Vol.58, No.1, pp. 451-454, 2009.
  26. [26] W. Gao, T. Motoki, and S. Kiyono, “Nanometer edge profile measurement of diamond cutting tools by atomic force microscope with optical alignment sensor,” Precis. Eng., Vol.30, No.4, pp. 396-405, 2006.
  27. [27] P. Khajornrungruang, K. Kimura, Y. Takaya, and K. Suzuki, “High Precision Tool Cutting Edge Monitoring Using Laser Diffraction for On-Machine Measurement,” Int. J. Automation Technol., Vol.6, No.2, pp. 163-167, 2012.
  28. [28] S. H. Jang, Y. Shimizu, S. Ito, and W. Gao, “A micro optical probe for edge contour evaluation of diamond cutting tools,” J. Sens. Sens. Syst., Vol.3, No.1, pp. 69-76, 2014.
  29. [29] K. Maruno, M. Michihata, Y. Mizutani, and Y. Takaya, “Fundamental Study on Novel On-Machine Measurement Method of a Cutting Tool Edge Profile with a Fluorescent Confocal Microscopy,” Int. J. Automation Technol., Vol.10, No.1, pp. 106-113, 2016.
  30. [30] D. W. K. Neo, A. S. Kumar, and M. Rahman, “A novel surface analytical model for cutting linearization error in fast tool/slow slide servo diamond turning,” Precis. Eng., Vol.38, No.4, pp. 849-860, 2014.
  31. [31] A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Letters, Vol.30, No.13, pp. 1707-1709, 2005.
  32. [32] S. To, T. C. Kwok, C. F. Cheung, and W. B. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” Proc. SPIE, Vol.6149, pp. 61490S1-61490S6, 2006.
  33. [33] M. Mukaida and J. Yan, “Fabrication of Hexagonal Microlens Arrays on Single-Crystal Silicon Using the Tool-Servo Driven Segment Turning Method,” Micromachines, Vol.8, No.11, pp. 323-340, 2017.
  34. [34] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. of Optics A: Pure and Applied Optics,, Vol.8, No.7, pp. S407-S429, 2006.
  35. [35] C. Gomez, R. Su, P. de Groot, and R. Leach, “Noise Reduction in Coherence Scanning Interferometry for Surface Topography Measurement,” Nanomanufacturing and Metrology, Vol.3, No.1, pp. 68-76, 2020.
  36. [36] J. Ding, Y. Chang, P. Chen, H. Zhuang, Y. Ding, H. Lu, and Y. Chen, “Dynamic modeling of ultra-precision fly cutting machine tool and the effect of ambient vibration on its tool tip response,” Int. J. Extrem. Manuf., Vol.2, No.2, 025301, 2020.
  37. [37] Z. Zhang, J. Yan, and T. Kuriyagawa, “Manufacturing technologies toward extreme precision,” Int. J. Extrem. Manuf., Vol.1, No.2, 022001, 2019.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 01, 2020