single-au.php

IJAT Vol.14 No.4 pp. 644-653
doi: 10.20965/ijat.2020.p0644
(2020)

Paper:

Effective Optical System Assembly Using Ultra-Precise Manufactured References

Andreas Gebhardt*,†, Matthias Beier*, Erik Schmidt*, Thomas Rendel**, Ute Gawronski**, and Eyk Gebhardt**

*Fraunhofer Institute for Applied Optics and Precision Engineering IOF
Albert-Einstein-Straße 7, Jena 07745, Germany

Corresponding author

**Jena-Optronik GmbH, Jena, Germany

Received:
December 19, 2019
Accepted:
April 22, 2020
Published:
July 5, 2020
Keywords:
optical system assembly, reference structures, alignment turning, snap-together
Abstract

The present work demonstrates that exactly manufactured references for joining, mounting, and metrology purposes are crucial in the effective assembly of high-quality optical systems. Based on the alignment turning of spherical and aspherical lenses, the proposed approach can be transferred to non-rotational symmetric elements such as prisms, active components (e.g., laser diodes), and freeform mirrors. The complexity of the optical component decides whether on-machine metrology or specific measurement setups need to be used to determine the position and orientation of the references with respect to the optical function. The resulting correction data are considered during the machining process. The subsequent correction cycle realizes mounting and metrology references down to sub-micron precision using diamond-machining techniques. This approach facilitates the assembly of demanding optical systems and even freeform arrangements in a predictable and passive manner. Different machining setups as well as the corresponding metrology approaches are demonstrated, and results are presented for representative components. The effectiveness of the approach is discussed using rotationally symmetrical lens systems and a snap-together freeform mirror system.

Cite this article as:
A. Gebhardt, M. Beier, E. Schmidt, T. Rendel, U. Gawronski, and E. Gebhardt, “Effective Optical System Assembly Using Ultra-Precise Manufactured References,” Int. J. Automation Technol., Vol.14 No.4, pp. 644-653, 2020.
Data files:
References
  1. [1] K. G. Carrigan, “Manufacturing status of Tinsley visible quality bare aluminum and an example of snap together assembly,” Proc. of SPIE Infrared Technology and Applications XXXVIII, Vol.8353, 83532D, 2012.
  2. [2] S. Frank, “Justierdrehen: Eine technologi für Hochleistungsoptik. Berichte aus dem Institut für Maschinenelemente und Kostruktion,” Doctoral thesis, Technische Universität Ilmenau, 2008.
  3. [3] S. Scheiding, “Vereinfachung der Systemmontage von metalloptischen IR-Spiegelteleskopen,” Doctoral thesis, Fraunhofer Verlag, 2014.
  4. [4] M. Beier et al., “Lens centering of aspheres for high-quality optics,” Adv. Opt. Techn., Vol.1, No.6, pp. 441-446, 2012.
  5. [5] J. J. Kumler and C. Buss, “Sub-cell turning to accomplish micron-level alignment of precision assemblies,” Proc. of SPIE Optical System Alignment, Tolerancing, and Verification XI, Vol.10377, 1037702, 2017.
  6. [6] V. Guyenot, C. Damm, A. Gebhardt, C. Siebenhaar, and T. Peschel, “Method and device for producing reference surfaces on mounts of optical elements by means of machining, and thus produced optical elements,” Patent WO2004103638A1, 2004.
  7. [7] C. Wenzel et al., “Advanced centering of mounted optics,” Proc. of SPIE Components and Packaging for Laser Systems II, Vol.9730, 973012, 2016.
  8. [8] A. Gebhardt and R. Steinkopf, “Lens centering by servo turning,” Proc. of euspen Int. Conf., Bremen, pp. 229-232, 2007.
  9. [9] M. Beier, A. Gebhardt, E. Schmidt, A. Platzdasch, and R. Eberhardt, “Hochgenaue Referenzflächenbearbeitung asphärischer, zylindrischer und prismatischer Optikkomponenten,” W.-D. Prenzel (Ed.), “Jahrbuch Optik und Feinmechanik 2013,” OPTIK-Verlag, pp. 99-122, 2013.
  10. [10] N. W. Horvath et al., “Optomechanical design and fabrication of a snap together freeform TMA telescope,” Proc. of 32nd ASPE Annual Meeting, pp. 133-138, 2017.
  11. [11] J. Hartung, M. Beier, T. Peschel, A. Gebhardt, and S. Risse, “Mechanical design implementation and mathematical considerations for ultra precise diamond turning of multiple freeform mirrors on a common substrate,” Proc. SPIE Optical Systems Design 2015: Optical Fabrication, Testing, and Metrology V, Vol.9628, 96280U, 2015.
  12. [12] K. Yoshizumi and K. Kubo et al., “Ultrahigh Accurate 3-D Profilometer Using Atomic Force Probe Measure Nanometer,” J. of Japan Society for Precision Engineering, Vol.68, No.3, pp. 361-366, 2002.
  13. [13] J. Heinisch, E. Dumitrescu, and S. Krey, “Novel technique for measurement of centration errors of complex completely mounted multi-element objective lenses,” Proc. of SPIE Current Developments in Lens Design and Optical Engineering VII, Vol.6288, 628810, 2006.
  14. [14] M. N. Sweeney, “Advanced manufacturing technologies for light-weight post-polished snap-together reflective optical system designs,” Proc. SPIE Optomechanical Design and Engineering 2002, Vol.4771, pp. 144-154, 2002.
  15. [15] M. Beier, J. Hartung, T. Peschel, C. Damm, A. Gebhardt, S. Scheiding, D. Stumpf, U. D. Zeitner, S. Risse, R. Eberhardt, and A. Tünnermann, “Development, fabrication, and testing of an anamorphic imaging snap together freeform telescope,” Appl. Optics, Vol.54, pp. 3530-3542, 2015.
  16. [16] M. Beier, “Fertigung und Kompensation von metalloptischen Hochleistungssystemen für den visuellen Spektralbereich,” Doctoral thesis, Fraunhofer Verlag, 2017.
  17. [17] J. Stock, M. Beier, J. Hartung, S. Merx, and H. Gross, “Simulation and analysis of optical imaging systems including real freeform components,” Advanced Optical Technologies, Vol.8, No.2, pp. 111-117, 2019.
  18. [18] R. L. Rhorer and C. J. Evans, “Fabrication of optics by diamond turning,” M. Bass et al. (Eds.), “Handbook of Optics Vol.2 (3rd edition),” McGraw-Hill, pp. 41.1-41.13, 2001.
  19. [19] S. Scheiding, S. Risse, A. Gebhardt, C. Damm, R. Eberhardt, and A. Tünnermann, “Freeform mirror fabrication by means of fast tool servo diamond turning,” ASPE Proc. Series 52, pp. 433-436, 2011.
  20. [20] K. Kubo, “Laser based asphere and freeform measurement technology by UA3P,” Proc. of 11th Laser Metrology for Precision Measurement and Inspection in Industry 2014, pp. 1-6, 2014.
  21. [21] H. Suzuki, M. Okada, Y. Masuda, Y. Namba, K. Miura, S. Morita, and Y. Yamagata, “Ultraprecision Cutting of Nickel Plated Mold for X-Ray Mirror,” Int. J. Automation Technol., Vol.10, No.4, pp. 624-631, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 09, 2024