single-au.php

IJAT Vol.14 No.1 pp. 91-98
doi: 10.20965/ijat.2020.p0091
(2020)

Paper:

Development of a Microprobing System for Side Wall Detection Based on Local Surface Interaction Force Detection

So Ito, Yusuke Shima, Daichi Kato, Kimihisa Matsumoto, and Kazuhide Kamiya

Department of Intelligent Robotics, Toyama Prefectural University
5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan

Corresponding author

Received:
June 21, 2019
Accepted:
September 30, 2019
Published:
January 5, 2020
Keywords:
microprobe, surface interaction force, micro-stylus, micro-CMM
Abstract

This study proposes a novel microprobing system for the surface detection of the side wall of micrometric scale workpieces based on the detection of the local surface interaction force. A spherical tip-shaped glass capillary tube with a micrometric scale diameter was employed as a micro-stylus. To obtain a low measuring force, the local attractive interaction force on the surface of the workpieces was detected by the vibrating micro-stylus and used as the probing trigger signal. The vibration in the main axis direction of the stylus allowed detection of the local surface interaction force in all directions around the stylus shaft. In this paper, the principle and configuration of the developed microprobe are mentioned. Probing detections around the stylus shaft were verified by the surface detection of a pin gauge. Repeatability of the probing by the developed microprobing system was evaluated.

Cite this article as:
S. Ito, Y. Shima, D. Kato, K. Matsumoto, and K. Kamiya, “Development of a Microprobing System for Side Wall Detection Based on Local Surface Interaction Force Detection,” Int. J. Automation Technol., Vol.14, No.1, pp. 91-98, 2020.
Data files:
References
  1. [1] H. Murakami, A. Katsuki, T. Sajima, and K. Uchiyama, “Fabrication of Ultra-Small-Diameter Optical-Fiber Probe Using Acid-Etch Technique and CO2 Laser for 3D-Micro Metrology,” Int. J. Automation Technol., Vol.11, No.5, pp. 699-706, doi:10.20965/ijat.2017.p0699, 2017.
  2. [2] I. Ogura and Y. Okazaki, “Development of Micro Contact Detection Probe for Microhole Quality Control,” Int. J. Automation Technol., Vol.5, No.2, pp. 102-108, doi:10.20965/ijat.2011.p0102, 2011.
  3. [3] I. Ogura and Y. Okazaki, “Development of Micro Probe System for Micro Measurement Center,” Int. J. Automation Technol., Vol.3, No.4, pp. 471-477, doi:10.20965/ijat.2009.p0471, 2009.
  4. [4] H. Murakami, A. Katsuki, T. Sajima, and T. Suematsu, “Study of a vibrating fiber probing system for 3-D micro-structures: performance improvement,” Measurement Science and Technology, Vol.25, No.9, 094010, doi:10.1088/0957-0233/25/9/094010, 2014.
  5. [5] B. Muralikrishnan, J. A. Stone, and J. R. Stoup, “Fiber deflection probe for small hole metrology,” Precision Engineering, Vol.30, No.2, pp. 154-164, doi:10.1016/j.precisioneng.2005.07.004, 2006.
  6. [6] S. Ito, Y.-L. Chen, Y. Shimizu, H. Kikuchi, W. Gao, K. Takahashi, T. Kanayama, K. Arakawa, and A. Hayashi, “Uncertainty analysis of slot die coater gap width measurement by using a shear mode micro-probing system,” Precision Engineering, Vol.43, pp. 525-529, doi:10.1016/j.precisioneng.2015.09.016, 2016.
  7. [7] S. Ito, H. Kikuchi, Y.-L. Chen, Y. Shimizu, W. Gao, K. Takahashi, T. Kanayama, K. Arakawa, and A. Hayashi, “A Micro-Coordinate Measurement Machine (CMM) for Large-Scale Dimensional Measurement of Micro-Slits,” Applied Science, Vol.6, No.5, p. 156, doi:10.3390/app6050156, 2016.
  8. [8] R.-J. Li, M. Xiang, Y.-X. He, K.-C. Fan, Z.-Y. Cheng, Q.-X. Huang, and B. Zhou, “Development of a High-Precision Touch-Trigger Probe Using a Single Sensor,” Applied Science, Vol.6, No.3, p. 86, doi:10.3390/app6030086, 2016.
  9. [9] A. Weckenmann, T. Estler, G. Peggs, and D. McMurtry, “Probing Systems in Dimensional Metrology,” CIRP Annals – Manufacturing Technology, Vol.53, No.2, pp. 657-684, doi:10.1016/S0007-8506(07)60034-1, 2004.
  10. [10] J. D. Claverley and R. K. Leach, “A review of the existing performance verification infrastructure for micro-CMMs,” Precision Engineering, Vol.39, pp. 1-15, doi:10.1016/j.precisioneng.2014.06.006, 2015.
  11. [11] G. Dai, M. Neugebauer, M. Stein, S. Bütefisch, and U. Neuschaefer-Rube, “Overview of 3D Micro- and Nanocoordinate Metrology at PTB,” Applied Science, Vol.6, No.9, p. 257, doi:10.3390/app6090257, 2016.
  12. [12] R. Thalmann, F. Meli, and A. Küng, “State of the Art of Tactile Micro Coordinate Metrology,” Applied Science, Vol.6, No.5, p. 150, doi: 10.3390/app6050150, 2016.
  13. [13] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Annals – Manufacturing Technology,” Vol.64, No.2, pp. 773-796, doi:10.1016/j.cirp.2015.05.009, 2015.
  14. [14] G. Dai, S. Bütefisch, F. Pohlenz, and H.-U. Danzebrink, “A high precision micro/nano CMM using piezoresistive tactile probes,” Measurement Science and Technology, Vol.20, No.8, 084001, doi:10.1088/0957-0233/20/8/084001, 2009.
  15. [15] H. Murakami, A. Katsuki, H. Onikura, T. Sajima, N. Kawagoishi, and E. Kondo, “Development of a System for Measuring Micro Hole Accuracy Using an Optical Fiber Probe,” J. of Advanced Mechanical Design, Systems, and Manufacturing, Vol.4, No.5, pp. 995-1004, doi:10.1299/jamdsm.4.995, 2010.
  16. [16] E. J. C. Bos, “Aspects of tactile probing on the micro scale,” Precision Engineering, Vol.35, No.2, pp. 228-240, doi:10.1016/j.precisioneng.2010.09.010, 2011.
  17. [17] K. Hidaka, H.-U. Danzebrink, H. Illers, A. Saito, and N. Ishikawa, “A high-resolution, self-sensing and self-actuated probe for micro- and nano-coordinate metrology and scanning force microscopy,” CIRP Annals – Manufacturing Technology, Vol.59, No.1, pp. 517-520, doi:10.1016/j.cirp.2010.03.041, 2010.
  18. [18] K. Hidaka, A. Saito, and S. Koga, “Study of a micro-roughness probe with ultrasonic sensor,” CIRP Annals – Manufacturing Technology, Vol.57, No.1, pp. 489-492, doi:10.1016/j.cirp.2008.03.129, 2008.
  19. [19] J. D. Claverley and R. K. Leach, “Development of a three-dimensional vibrating tactile probe for miniature CMMs,” Precision Engineering, Vol.37, No.2, pp. 491-499, doi: 10.1016/j.precisioneng.2012.12.008, 2013.
  20. [20] B. Goj, L. Dressler, and M. Hoffmann, “Design and characterization of a resonant triaxial microprobe,” J. of Micromechanics and Microengineering, Vol.25, No.12, 125011, doi:10.1088/0960-1317/25/12/125011, 2015.
  21. [21] B. Goj, L. Dressler, and M. Hoffmann, “Semi-contact measurements of three-dimensional surfaces utilizing a resonant uniaxial microprobe,” Measurement Science and Technology, Vol.25, No.6, 064012, doi:10.1088/0957-0233/25/6/064012, 2014.
  22. [22] S. Ito, I. Kodama, and W. Gao, “Development of a probing system for a micro-coordinate measuring machine by utilizing shear-force detection,” Measurement Science and Technology, Vol.25, No.6, 064011, doi:10.1088/0957-0233/25/6/064011, 2014.
  23. [23] H. Matsuoka, S. Fukui, and T. Kato, “Nanomeniscus Forces in Undersaturated Vapors: Observable Limit of Macroscopic Characteristics,” Langmuir, Vol.18, No.18, pp. 6796-6801, doi:10.1021/la011478z, 2002.
  24. [24] S. Santos, A. Verdaguer, T. Souier, N. H. Thomson, and M. Chiesa, “Measuring the true height of water films on surfaces,” Nanotechnology, Vol.22, No.46, 465705, doi:10.1088/0957-4484/22/46/465705, 2011.
  25. [25] M.-H. Whangbo, G. Bar, and R. Brandsch, “Description of phase imaging in tapping mode atomic force microscopy by harmonic approximation,” Surface Science, Vol.411, pp. L794-L801, doi:10.1016/S0039-6028(98)00349-5, 1998.
  26. [26] G. Bar, R. Brandsch, and M.-H. Whangbo, “Description of the frequency dependence of the amplitude and phase angle of a silicon cantilever tapping on a silicon substrate by the harmonic approximation,” Surface Science, Vol.411, Nos.1-2, pp. L802-L809, doi:10.1016/S0039-6028(98)00348-3, 1998.
  27. [27] T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity,” J. of Applied Physics, Vol.69, No.2, pp. 668-673, doi:10.1063/1.347347, 1991.
  28. [28] R. García and R. Pérez, “Dynamic atomic force microscopy methods,” Surface Science Reports, Vol.47, Nos.6-8, pp. 197-301, doi:10.1016/S0167-5729(02)00077-8, 2002.
  29. [29] F. J. Giessibl, “AFM’s path to atomic resolution,” Materials Today, Vol.8, No.5, pp. 32-41, doi:10.1016/S1369-7021(05)00844-8, 2005.
  30. [30] R. Leach, “Abbe Error/Offset,” L. Laperrière and G. Reinhart (Eds.) “CIRP Encyclopedia of Production Engineering,” pp. 1-4, Springer, 2014.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 01, 2020