single-au.php

IJAT Vol.12 No.1 pp. 87-96
doi: 10.20965/ijat.2018.p0087
(2018)

Review:

Terahertz Plasmonics and Nano-Carbon Electronics for Nano-Micro Sensing and Imaging

Xiangying Deng* and Yukio Kawano*,**,†

*Department of Electrical and Electronic Engineering, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Corresponding author

**Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Tokyo, Japan

Received:
June 19, 2017
Accepted:
November 16, 2017
Published:
January 5, 2018
Keywords:
terahertz, plasmonics, carbon nanotube, flexible imaging
Abstract

Sensing and imaging with THz waves is an active area of modern research in optical science and technology. There have been a number of studies for enhancing THz sensing technologies. In this paper, we review our recent development of THz plasmonic structures and carbon-based THz imagers. The plasmonic structures have strong possibilities of largely increasing detector sensitivity because of their outstanding properties of high transmission enhancement at a subwavelength aperture and local field concentration. We introduce novel plasmonic structures and their performance, including a Si-immersed bull’s-eye antenna and multi-frequency bull’s-eye antennas. The latter part of this paper explains carbon-based THz detectors and their applications in omni-directional flexible imaging. The use of carbon nanotube films has led to a room-temperature, flexible THz detector and has facilitated the visualization of samples with three-dimensional curvatures. The techniques described in this paper can be used effectively for THz sensing and imaging on a micro- and nano-scale.

Cite this article as:
X. Deng and Y. Kawano, “Terahertz Plasmonics and Nano-Carbon Electronics for Nano-Micro Sensing and Imaging,” Int. J. Automation Technol., Vol.12 No.1, pp. 87-96, 2018.
Data files:
References
  1. [1] D. Clery, “Brainstorming Their Way to an Imaging Revolution,” Science, Vol.297, No.5582, pp. 761-763, 2002.
  2. [2] S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz Imaging Diagnostics of Cancer Tissues with a Chemometrics Technique,” Appl. Phys. Lett., Vol.90, No.4, Id.041102, 2007.
  3. [3] S. Ariyoshi, C. Otani, A. Dobroiu, H. Sato, K. Kawase, H. M. Shimizu, T. Taino and H. Matsuo, “Terahertz Imaging with a Direct Detector Based on Superconducting Tunnel Junctions,” Appl. Phys. Lett., Vol.88, Id.203503, 2006.
  4. [4] C. Kulesa, “Terahertz Spectroscopy for Astronomy: From Comets to Cosmology,” IEEE J. on Terahertz Science and Technology, Vol.1, No.1, pp. 232-240, 2011.
  5. [5] M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon., Vol.1, pp. 97-105, 2007.
  6. [6] Y. Kawano, “Terahertz waves: a tool for condensed matter, the life sciences and astronomy,” Contemp. Phys., Vol.54, pp. 143-165, 2013.
  7. [7] B. Ferguson and X, Zhang, “Materials for Terahertz Science and Technology,” Nat. Materials, Vol.1, pp. 26-33, 2002.
  8. [8] P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microwave Theory Tech., Vol.50, pp. 910-928, 2002.
  9. [9] C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev., Vol.104, pp. 1759-1779, 2004.
  10. [10] P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech., Vol.52, pp. 2438-2446, 2004.
  11. [11] D. Mittleman, “Sensing with Terahertz Radiation,” Springer, Berlin, 2003.
  12. [12] K. Sakai, “Terahertz Optoelectronics,” Springer, Berlin, 2005.
  13. [13] M. Tonouchi, “Terahertz Technology,” Ohmsha, Tokyo, 2006.
  14. [14] T. Otsuji, “Trends in the research of modern terahertz detectors: plasmon detectors,” IEEE Trans. Terahertz Sci. Technol., Vol.5, pp. 1110-1120, 2015.
  15. [15] M. S. Vitiello, L. Viti, L. Romeo. D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor Nanowires for Highly Sensitive, Room-temperature Detection of Terahertz Quantum Cascade Laser Emission,” Appl. Phys. Lett., Vol.100, 241101, 2012.
  16. [16] M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors,” Nano Lett., Vol.12, pp. 96-101, 2012.
  17. [17] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission Through Sub-wavelength Hole Arrays,” Nature, Vol.391, pp. 667-669, 1998.
  18. [18] M. Bauer, A. Lisauskas, S. Boppel, M. Wundt, V. Krozer, H. G. Roskos, S. Chevtchenko, J. Wurfl, W. Heinrich, and G. Trankle, “Bow-tie-antenna-coupled Terahertz Detectors Using AlGaN/GaN Field-effect Transistors with 0.25 Micrometer Gate Length,” Proc. of the 8th European Microwave Integrated Circuits Conf., pp. 212-215, 2013.
  19. [19] T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced Light Transmission Through a Single Subwavelength Aperture,” Opt. Lett., Vol.26, No.24, pp. 1972-1974, 2001.
  20. [20] J. M. Ramer, F. Ospald, G. V. Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett., Vol.103, 021119, 2013.
  21. [21] C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of High Power Pulsed Terahertz Radiation Using a Plasmonic Photoconductive Emitter Array with Logarithmic Spiral Antennas,” Appl. Phys. Lett., Vol.104, No.8, 081122, 2014.
  22. [22] L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene Field-effect Transistors as Room – temperature Terahertz Detectors,” Nature Materials, Vol.11, pp. 865-871, 2012.
  23. [23] C. W. Berry, N. Wang, M. R. Hashemi, and M. Jarrahi, “Plasmonic Photoconductive Antennas for High-power Terahertz Generation and High-sensitivity Terahertz Detection,” Proc. of the 8th European Conf. on Antennas and Propagation, pp. 2643-2646, 2014.
  24. [24] S. Nahar, A. Gutin, A. Muraviev, I. Wilke, M. Shur, and M. M. Hella, “Terahertz Detection Using On Chip Patch and Dipole Antenna-Coupled GaAs High Electron Mobility Transistors,” Proc. of the Microwave Symposium, pp. 1-4, 2014.
  25. [25] G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya, K. Yamamoto, M. Shiwa, and M. Tani, “A Matter of Symmetry: Terahertz Polarization Detection Properties of a Detection Properties of a Multi-contact Photoconductive Antenna Evaluated by a Response Matrix Analysis,” Opt. Exp., Vol.23, No.12, pp. 016184-16195, 2015.
  26. [26] K. Sendur W. Challener, and J. Microsc, “Near-field Radiation of Bow-tie Antennas and Apertures at Optical Frequencies,” Vol.210, No.3, pp. 279-283, 2002.
  27. [27] E. N. Economou, “Surface Plasmons in Thin Films” Phys. Rev., Vol.182, pp. 539-554, 1969.
  28. [28] D. Qu and D. Grischkowsky, “Observation of a New Type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays,” Phys. Rev. Lett., Vol.93, 196804, 2004.
  29. [29] S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer-Verlag, New York, 2007.
  30. [30] J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernandes-Dominguez, “Spoof Plasmon Polaritons in Slanted Geometries,” Phys. Rev. B, Vol.85, Id.075441, 2012.
  31. [31] D. E. Kretschmann and H. Raether, “Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” J. Phys. Sci., Vol.23, Issue 12, pp. 2135-2136, 1968.
  32. [32] P. B. Catrysse and S. Fan, “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophotonics, Vol.2, 021790, 2008.
  33. [33] S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett., Vol.97, 176805, 2006.
  34. [34] M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett., Vol.84, pp. 2040-2042, 2004.
  35. [35] K. Ishihara, G. hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz Wave Enhanced Transmission through a Single Subwavelength Aperture with Periodic Surface Structures,” Jpn. J. Appl. Phys., Vol.44, Issue 32, pp. L1005-L1007, 2005.
  36. [36] K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave- assisted bow-tie aperture,” Appl. Phys. Lett., Vol.89, No.20, pp. 201120-1-201120-3, 2006.
  37. [37] S. Liu, X. Shou, and A. Nahata, “Coherent Detection of Multiband Terahertz Radiation Using a Surface Plasmon-Polariton Based Photoconductive Antenna,” IEEE Trans. Terahertz Sci. Technol., Vol.1, pp. 412-415, 2011.
  38. [38] D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Single sub-wavelength aperture with greatly enhanced transmission,” New J. Phys., Vol.14, Issue 5, Id.053001, 2012.
  39. [39] A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature Plasmonic Wave Plates,” Phys. Rev. Lett., Vol.101, 043902, 2008.
  40. [40] O. Mahboub, S. C. Palacios, C. Genet, F. J. Gracia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express Vol.18, pp. 11292-11299, 2010.
  41. [41] D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express, Vol.19, pp. 2148, 2011.
  42. [42] F. Ren, W. Xu, J. Ye, K. Ang, H. Lu, R. Zhang, M. Yu, G. Lo, H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano- photodetectors with bull’s eye antennas,” Opt. Express Vol.22, p. 15949, 2014.
  43. [43] M. Yang, F. Ren, L. Ru, L. Xiao, Y. Sheng, J. Wang, Y. Zheng, and Y. Shi, “Split Bull’s Eye Antenna for High-Speed Photodetector in the Range of Visible to Mid-Infrared,” IEEE Photonics Technol. Lett., Vol.28, p. 1177, 2016.
  44. [44] F. Ren, K. Ang, J. Ye, M. Yu, G. Lo, and D, Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett., Vol.11, pp. 1289-1293, 2011.
  45. [45] T. Iguchi, T. Sugaya, and Y. Kawano, “Silicon-immersed terahertz plasmonic structures,” Appl. Phys. Lett., Vol.110, 151105, 2017.
  46. [46] D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B, Vol.7, p. 2006, 1990.
  47. [47] S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett., Vol.57, p. 2615, 1990.
  48. [48] H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev., Vol.66, p. 163, 1944.
  49. [49] T. Iguchi, S. Ihara, S. Oda, and Y. Kawano, “Thickness dependence of Terahertz Plasmonic Antenna,” IEEE Proc. of Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016.
  50. [50] X. Deng, S. Oda, and Y. Kawano, “Frequency Selective, High Transmission Spiral Terahertz Plasmonic Antennas,” J. of Modeling and Simulation of Antennas and Propagation, Vol.2, pp. 1-6, 2016.
  51. [51] M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced Enhanced Transmission and Directivity of Microwave Radiation through a Subwavelength Circular Metal Aperture,” Appl. Phys. Lett., Vol.84, p. 2040, 2004.
  52. [52] K. Ishihara, T. Ikari, H. Minamide, G. Hatakoshi, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jp. J. Appl. Phys., Vol.44, pp. L929-L931, 2005.
  53. [53] X. Deng, S. Oda, and Y. Kawano, “Split-joint Bull’s Eye Structure with Aperture Optimization for Multi-frequency Terahertz Plasmonic Antennas,” IEEE Proc. of Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016.
  54. [54] L. Viti, D. Coquillat, D. Ercolani, W. Knap, L. Sorba, and M. S. Vitiello, “High- performance room-temperature THz nanodetectors with a narrowband antenna,” Proc. SPIE 8985, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII, Vol.8985, pp. 89850W, 2014.
  55. [55] K. Sendure and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. of Microscopy, Vol.210, pp. 279-283, 2002.
  56. [56] Y. Kawano, “Wide-band frequency-tunable terahertz and infrared detection with graphene,” Nanotechnology, Vol.24, p. 214004, 2013.
  57. [57] X. Cai et al., “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotech., Vol.9, pp. 814-819, 2014.
  58. [58] L. Vicarelli et al., “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater., Vol.11, pp. 865-871, 2012.
  59. [59] D. Spirito et al., “High performance bilayer-graphene terahertz detectors”. Appl. Phys. Lett., Vol.104, 061111, 2014.
  60. [60] S. L. Chen et al., “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photon., Vol.8, pp. 537-542, 2014.
  61. [61] M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science, Vol.312, pp. 413-416, 2006.
  62. [62] X. He et al., “Carbon nanotube terahertz detector,” Nano Lett., Vol.14, pp. 3953-3958, 2014.
  63. [63] K. J. Erikson et al., “Figure of merit for carbon nanotube photothermoelectric detectors,” ACS Nano, Vol.9, pp. 11618-11627, 2015.
  64. [64] X. He et al., “Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films,” ACS Nano, Vol.7, pp. 7271-7277, 2013.
  65. [65] H. M. Manohana et al., “Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications,” Nano Lett., Vol.5, pp. 1469-1474, 2005.
  66. [66] Y. Kawano, T. Uchida, and K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett., Vol.95, 083123, 2009.
  67. [67] M. Rinzan et al., “Carbon nanotube quantum dots as highly sensitive terahertz- cooled spectrometers,” Nano Lett., Vol.12, pp. 3097-3100, 2012.
  68. [68] D. Suzuki, S. Oda, and Y. Kawano, “GaAs/AlGaAs field-effect transistor for tunable terahertz detection and spectroscopy with built-in signal modulation,” Appl. Phys. Lett., Vol.102, 122102, 2013.
  69. [69] K. Kobashi, T. Hirabayashi, S. Ata, T. Yamada, D. N. Futaba, and K. Hata, “Green, Scalable, Binderless Fabrication of a Single-Walled Carbon Nanotube Nonwoven Fabric Based on an Ancient Japanese Paper Process,” ACS Appl. Mater. Interfaces, Vol.5, pp. 12602-12608, 2013.
  70. [70] D. Suzuki, S. Oda, and Y. Kawano, “Mechanism of Carbon Nanotubes Terahertz Detectors Based on Photothermoelectric Effect,” IEEE Proc. of Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016.
  71. [71] D. Suzuki, S. Oda, and Y. Kawano, “A flexible and wearable terahertz scanner,” Nat. Photonics, Vol.10, p. 809, 2016.
  72. [72] B. C. St-Antoine, D. Menard, and R. Martel, “Photothermoelectric effects in single-walled carbon nanotube films: reinterpreting scanning photocurrent experiments,” Nano Res., Vol.5, pp. 73-81, 2012.
  73. [73] N. Oda, “Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging,” C. R. Phys., Vol.11, pp. 496-509, 2010.
  74. [74] R. Han et al., “Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel,” IEEE J. Solid-State Circ. Vol.48, pp. 2296-2308, 2013.
  75. [75] J. P. Guillet et al., “Review of terahertz tomography techniques,” J. Infrared Millim. Terahertz Waves, Vol.35, pp. 382-411, 2014.
  76. [76] K. Kawase, T. Shibuya, S. Hayashi, and K. Suizu, “THz imaging techniques for nondestructive inspections,” C. R. Phys., Vol.11, pp. 510-518, 2010.
  77. [77] E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D, Vol.39, pp. 301-310, 2006.
  78. [78] S. R. Tripathi, E. Miyata, P. B. Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep., Vol.5, p. 9071, 2015.
  79. [79] C. M. Ciesla et al., “Biomedical applications of terahertz pulse imaging,” Proc. SPIE, Vol.3934, pp. 73-81, 2000.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 09, 2024