Review:
Terahertz Plasmonics and Nano-Carbon Electronics for Nano-Micro Sensing and Imaging
Xiangying Deng* and Yukio Kawano*,**,†
*Department of Electrical and Electronic Engineering, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
†Corresponding author
**Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
Sensing and imaging with THz waves is an active area of modern research in optical science and technology. There have been a number of studies for enhancing THz sensing technologies. In this paper, we review our recent development of THz plasmonic structures and carbon-based THz imagers. The plasmonic structures have strong possibilities of largely increasing detector sensitivity because of their outstanding properties of high transmission enhancement at a subwavelength aperture and local field concentration. We introduce novel plasmonic structures and their performance, including a Si-immersed bull’s-eye antenna and multi-frequency bull’s-eye antennas. The latter part of this paper explains carbon-based THz detectors and their applications in omni-directional flexible imaging. The use of carbon nanotube films has led to a room-temperature, flexible THz detector and has facilitated the visualization of samples with three-dimensional curvatures. The techniques described in this paper can be used effectively for THz sensing and imaging on a micro- and nano-scale.
- [1] D. Clery, “Brainstorming Their Way to an Imaging Revolution,” Science, Vol.297, No.5582, pp. 761-763, 2002.
- [2] S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz Imaging Diagnostics of Cancer Tissues with a Chemometrics Technique,” Appl. Phys. Lett., Vol.90, No.4, Id.041102, 2007.
- [3] S. Ariyoshi, C. Otani, A. Dobroiu, H. Sato, K. Kawase, H. M. Shimizu, T. Taino and H. Matsuo, “Terahertz Imaging with a Direct Detector Based on Superconducting Tunnel Junctions,” Appl. Phys. Lett., Vol.88, Id.203503, 2006.
- [4] C. Kulesa, “Terahertz Spectroscopy for Astronomy: From Comets to Cosmology,” IEEE J. on Terahertz Science and Technology, Vol.1, No.1, pp. 232-240, 2011.
- [5] M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon., Vol.1, pp. 97-105, 2007.
- [6] Y. Kawano, “Terahertz waves: a tool for condensed matter, the life sciences and astronomy,” Contemp. Phys., Vol.54, pp. 143-165, 2013.
- [7] B. Ferguson and X, Zhang, “Materials for Terahertz Science and Technology,” Nat. Materials, Vol.1, pp. 26-33, 2002.
- [8] P. H. Siegel, “Terahertz Technology,” IEEE Trans. Microwave Theory Tech., Vol.50, pp. 910-928, 2002.
- [9] C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev., Vol.104, pp. 1759-1779, 2004.
- [10] P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech., Vol.52, pp. 2438-2446, 2004.
- [11] D. Mittleman, “Sensing with Terahertz Radiation,” Springer, Berlin, 2003.
- [12] K. Sakai, “Terahertz Optoelectronics,” Springer, Berlin, 2005.
- [13] M. Tonouchi, “Terahertz Technology,” Ohmsha, Tokyo, 2006.
- [14] T. Otsuji, “Trends in the research of modern terahertz detectors: plasmon detectors,” IEEE Trans. Terahertz Sci. Technol., Vol.5, pp. 1110-1120, 2015.
- [15] M. S. Vitiello, L. Viti, L. Romeo. D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor Nanowires for Highly Sensitive, Room-temperature Detection of Terahertz Quantum Cascade Laser Emission,” Appl. Phys. Lett., Vol.100, 241101, 2012.
- [16] M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-Temperature Terahertz Detectors Based on Semiconductor Nanowire Field-Effect Transistors,” Nano Lett., Vol.12, pp. 96-101, 2012.
- [17] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission Through Sub-wavelength Hole Arrays,” Nature, Vol.391, pp. 667-669, 1998.
- [18] M. Bauer, A. Lisauskas, S. Boppel, M. Wundt, V. Krozer, H. G. Roskos, S. Chevtchenko, J. Wurfl, W. Heinrich, and G. Trankle, “Bow-tie-antenna-coupled Terahertz Detectors Using AlGaN/GaN Field-effect Transistors with 0.25 Micrometer Gate Length,” Proc. of the 8th European Microwave Integrated Circuits Conf., pp. 212-215, 2013.
- [19] T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced Light Transmission Through a Single Subwavelength Aperture,” Opt. Lett., Vol.26, No.24, pp. 1972-1974, 2001.
- [20] J. M. Ramer, F. Ospald, G. V. Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett., Vol.103, 021119, 2013.
- [21] C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of High Power Pulsed Terahertz Radiation Using a Plasmonic Photoconductive Emitter Array with Logarithmic Spiral Antennas,” Appl. Phys. Lett., Vol.104, No.8, 081122, 2014.
- [22] L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene Field-effect Transistors as Room – temperature Terahertz Detectors,” Nature Materials, Vol.11, pp. 865-871, 2012.
- [23] C. W. Berry, N. Wang, M. R. Hashemi, and M. Jarrahi, “Plasmonic Photoconductive Antennas for High-power Terahertz Generation and High-sensitivity Terahertz Detection,” Proc. of the 8th European Conf. on Antennas and Propagation, pp. 2643-2646, 2014.
- [24] S. Nahar, A. Gutin, A. Muraviev, I. Wilke, M. Shur, and M. M. Hella, “Terahertz Detection Using On Chip Patch and Dipole Antenna-Coupled GaAs High Electron Mobility Transistors,” Proc. of the Microwave Symposium, pp. 1-4, 2014.
- [25] G. Niehues, S. Funkner, D. S. Bulgarevich, S. Tsuzuki, T. Furuya, K. Yamamoto, M. Shiwa, and M. Tani, “A Matter of Symmetry: Terahertz Polarization Detection Properties of a Detection Properties of a Multi-contact Photoconductive Antenna Evaluated by a Response Matrix Analysis,” Opt. Exp., Vol.23, No.12, pp. 016184-16195, 2015.
- [26] K. Sendur W. Challener, and J. Microsc, “Near-field Radiation of Bow-tie Antennas and Apertures at Optical Frequencies,” Vol.210, No.3, pp. 279-283, 2002.
- [27] E. N. Economou, “Surface Plasmons in Thin Films” Phys. Rev., Vol.182, pp. 539-554, 1969.
- [28] D. Qu and D. Grischkowsky, “Observation of a New Type of THz Resonance of Surface Plasmons Propagating on Metal-Film Hole Arrays,” Phys. Rev. Lett., Vol.93, 196804, 2004.
- [29] S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer-Verlag, New York, 2007.
- [30] J. J. Wood, L. A. Tomlinson, O. Hess, S. A. Maier, and A. I. Fernandes-Dominguez, “Spoof Plasmon Polaritons in Slanted Geometries,” Phys. Rev. B, Vol.85, Id.075441, 2012.
- [31] D. E. Kretschmann and H. Raether, “Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” J. Phys. Sci., Vol.23, Issue 12, pp. 2135-2136, 1968.
- [32] P. B. Catrysse and S. Fan, “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophotonics, Vol.2, 021790, 2008.
- [33] S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires,” Phys. Rev. Lett., Vol.97, 176805, 2006.
- [34] M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett., Vol.84, pp. 2040-2042, 2004.
- [35] K. Ishihara, G. hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz Wave Enhanced Transmission through a Single Subwavelength Aperture with Periodic Surface Structures,” Jpn. J. Appl. Phys., Vol.44, Issue 32, pp. L1005-L1007, 2005.
- [36] K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave- assisted bow-tie aperture,” Appl. Phys. Lett., Vol.89, No.20, pp. 201120-1-201120-3, 2006.
- [37] S. Liu, X. Shou, and A. Nahata, “Coherent Detection of Multiband Terahertz Radiation Using a Surface Plasmon-Polariton Based Photoconductive Antenna,” IEEE Trans. Terahertz Sci. Technol., Vol.1, pp. 412-415, 2011.
- [38] D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Single sub-wavelength aperture with greatly enhanced transmission,” New J. Phys., Vol.14, Issue 5, Id.053001, 2012.
- [39] A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature Plasmonic Wave Plates,” Phys. Rev. Lett., Vol.101, 043902, 2008.
- [40] O. Mahboub, S. C. Palacios, C. Genet, F. J. Gracia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express Vol.18, pp. 11292-11299, 2010.
- [41] D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express, Vol.19, pp. 2148, 2011.
- [42] F. Ren, W. Xu, J. Ye, K. Ang, H. Lu, R. Zhang, M. Yu, G. Lo, H. Tan, and C. Jagadish, “Second-order surface-plasmon assisted responsivity enhancement in germanium nano- photodetectors with bull’s eye antennas,” Opt. Express Vol.22, p. 15949, 2014.
- [43] M. Yang, F. Ren, L. Ru, L. Xiao, Y. Sheng, J. Wang, Y. Zheng, and Y. Shi, “Split Bull’s Eye Antenna for High-Speed Photodetector in the Range of Visible to Mid-Infrared,” IEEE Photonics Technol. Lett., Vol.28, p. 1177, 2016.
- [44] F. Ren, K. Ang, J. Ye, M. Yu, G. Lo, and D, Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett., Vol.11, pp. 1289-1293, 2011.
- [45] T. Iguchi, T. Sugaya, and Y. Kawano, “Silicon-immersed terahertz plasmonic structures,” Appl. Phys. Lett., Vol.110, 151105, 2017.
- [46] D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B, Vol.7, p. 2006, 1990.
- [47] S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett., Vol.57, p. 2615, 1990.
- [48] H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev., Vol.66, p. 163, 1944.
- [49] T. Iguchi, S. Ihara, S. Oda, and Y. Kawano, “Thickness dependence of Terahertz Plasmonic Antenna,” IEEE Proc. of Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016.
- [50] X. Deng, S. Oda, and Y. Kawano, “Frequency Selective, High Transmission Spiral Terahertz Plasmonic Antennas,” J. of Modeling and Simulation of Antennas and Propagation, Vol.2, pp. 1-6, 2016.
- [51] M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced Enhanced Transmission and Directivity of Microwave Radiation through a Subwavelength Circular Metal Aperture,” Appl. Phys. Lett., Vol.84, p. 2040, 2004.
- [52] K. Ishihara, T. Ikari, H. Minamide, G. Hatakoshi, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jp. J. Appl. Phys., Vol.44, pp. L929-L931, 2005.
- [53] X. Deng, S. Oda, and Y. Kawano, “Split-joint Bull’s Eye Structure with Aperture Optimization for Multi-frequency Terahertz Plasmonic Antennas,” IEEE Proc. of Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016.
- [54] L. Viti, D. Coquillat, D. Ercolani, W. Knap, L. Sorba, and M. S. Vitiello, “High- performance room-temperature THz nanodetectors with a narrowband antenna,” Proc. SPIE 8985, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII, Vol.8985, pp. 89850W, 2014.
- [55] K. Sendure and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. of Microscopy, Vol.210, pp. 279-283, 2002.
- [56] Y. Kawano, “Wide-band frequency-tunable terahertz and infrared detection with graphene,” Nanotechnology, Vol.24, p. 214004, 2013.
- [57] X. Cai et al., “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotech., Vol.9, pp. 814-819, 2014.
- [58] L. Vicarelli et al., “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater., Vol.11, pp. 865-871, 2012.
- [59] D. Spirito et al., “High performance bilayer-graphene terahertz detectors”. Appl. Phys. Lett., Vol.104, 061111, 2014.
- [60] S. L. Chen et al., “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photon., Vol.8, pp. 537-542, 2014.
- [61] M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, “Bolometric infrared photoresponse of suspended single-walled carbon nanotube films,” Science, Vol.312, pp. 413-416, 2006.
- [62] X. He et al., “Carbon nanotube terahertz detector,” Nano Lett., Vol.14, pp. 3953-3958, 2014.
- [63] K. J. Erikson et al., “Figure of merit for carbon nanotube photothermoelectric detectors,” ACS Nano, Vol.9, pp. 11618-11627, 2015.
- [64] X. He et al., “Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films,” ACS Nano, Vol.7, pp. 7271-7277, 2013.
- [65] H. M. Manohana et al., “Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications,” Nano Lett., Vol.5, pp. 1469-1474, 2005.
- [66] Y. Kawano, T. Uchida, and K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor,” Appl. Phys. Lett., Vol.95, 083123, 2009.
- [67] M. Rinzan et al., “Carbon nanotube quantum dots as highly sensitive terahertz- cooled spectrometers,” Nano Lett., Vol.12, pp. 3097-3100, 2012.
- [68] D. Suzuki, S. Oda, and Y. Kawano, “GaAs/AlGaAs field-effect transistor for tunable terahertz detection and spectroscopy with built-in signal modulation,” Appl. Phys. Lett., Vol.102, 122102, 2013.
- [69] K. Kobashi, T. Hirabayashi, S. Ata, T. Yamada, D. N. Futaba, and K. Hata, “Green, Scalable, Binderless Fabrication of a Single-Walled Carbon Nanotube Nonwoven Fabric Based on an Ancient Japanese Paper Process,” ACS Appl. Mater. Interfaces, Vol.5, pp. 12602-12608, 2013.
- [70] D. Suzuki, S. Oda, and Y. Kawano, “Mechanism of Carbon Nanotubes Terahertz Detectors Based on Photothermoelectric Effect,” IEEE Proc. of Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016.
- [71] D. Suzuki, S. Oda, and Y. Kawano, “A flexible and wearable terahertz scanner,” Nat. Photonics, Vol.10, p. 809, 2016.
- [72] B. C. St-Antoine, D. Menard, and R. Martel, “Photothermoelectric effects in single-walled carbon nanotube films: reinterpreting scanning photocurrent experiments,” Nano Res., Vol.5, pp. 73-81, 2012.
- [73] N. Oda, “Uncooled bolometer-type terahertz focal plane array and camera for real-time imaging,” C. R. Phys., Vol.11, pp. 496-509, 2010.
- [74] R. Han et al., “Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel,” IEEE J. Solid-State Circ. Vol.48, pp. 2296-2308, 2013.
- [75] J. P. Guillet et al., “Review of terahertz tomography techniques,” J. Infrared Millim. Terahertz Waves, Vol.35, pp. 382-411, 2014.
- [76] K. Kawase, T. Shibuya, S. Hayashi, and K. Suizu, “THz imaging techniques for nondestructive inspections,” C. R. Phys., Vol.11, pp. 510-518, 2010.
- [77] E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D, Vol.39, pp. 301-310, 2006.
- [78] S. R. Tripathi, E. Miyata, P. B. Ishai, and K. Kawase, “Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region,” Sci. Rep., Vol.5, p. 9071, 2015.
- [79] C. M. Ciesla et al., “Biomedical applications of terahertz pulse imaging,” Proc. SPIE, Vol.3934, pp. 73-81, 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.