IJAT Vol.12 No.1 pp. 73-78
doi: 10.20965/ijat.2018.p0073


V-Trench Biosensor: Microfluidic Plasmonic Biosensing Platform

Hiroki Ashiba

National Institute of Advanced Industrial Science and Technology (AIST)
Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Corresponding author

June 22, 2017
November 23, 2017
January 5, 2018
biosensor, surface plasmon resonance, fluorescence enhancement, microfluidic channel, virus detection

A V-trench biosensor is a sensitive biosensing platform utilizing fluorescence enhancement induced by surface plasmon resonance (SPR). Instruments for the SPR-assisted fluorescence assays, which were complicated and bulky, are drastically simplified and miniaturized by employing sensor chips equipped with prism-integrated microfluidic channels. In this review, the working principle, sensor design, and examples of virus detection of the V-trench biosensor are presented.

Cite this article as:
H. Ashiba, “V-Trench Biosensor: Microfluidic Plasmonic Biosensing Platform,” Int. J. Automation Technol., Vol.12 No.1, pp. 73-78, 2018.
Data files:
  1. [1] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators, Vol.4, pp. 299-304, 1983.
  2. [2] J. W. Attridge, P. B. Daniels et al., “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron., Vol.6, pp. 201-214, 1991.
  3. [3] V. S. Y. Lin, K. Motesharei et al., “A Porous Silicon-Based Optical Interferometric Biosensor,” Science, Vol.278, pp. 840-843, 1997.
  4. [4] T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surfaces A Physicochem. Eng. Asp., Vol.171, pp. 115-130, 2000.
  5. [5] A. Ymeti, J. Greve et al., “Fast, Ultrasensitive Virus Detection Using a Young Interferometer Sensor,” Nano Lett., Vol.7, pp. 394-397, 2007.
  6. [6] M. Fujimaki, C. Rockstuhl et al., “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express, Vol.16, pp. 6408-6416, 2008.
  7. [7] F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. U. S. A., Vol.105, pp. 20701-20704, 2008.
  8. [8] A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-Free Quantitation of a Cancer Biomarker in Complex Media Using Silicon Photonic Microring Resonators,” Anal. Chem., Vol.81, pp. 9499-9506, 2009.
  9. [9] K. Nomura, S. C. B. Gopinath et al., “An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing,” Nat. Commun., Vol.4, pp. 2855, 2013.
  10. [10] M. Yasuura and M. Fujimaki, “Detection of Extremely Low Concentrations of Biological Substances Using Near-Field Illumination,” Sci. Rep., Vol.6, pp. 39241, 2016.
  11. [11] J. Wang, “Electrochemical Glucose Biosensors,” Chem. Rev., Vol.108, pp. 814-825, 2007.
  12. [12] B. A. Cornell, V. L. B. Braach-Maksvytis et al., “A biosensor that uses ion-channel switches,” Nature, Vol.387, pp. 580-583, 1997.
  13. [13] Y. Cui, Q. Wei et al., “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, Vol.293, pp. 1289-1292, 2001.
  14. [14] J. Fritz, M. K. Baller et al., “Translating Biomolecular Recognition into Nanomechanics,” Science, Vol.288, pp. 316-318, 2000.
  15. [15] G. Yoshikawa, T. Akiyama et al., “Nanomechanical Membrane-type Surface Stress Sensor,” Nano Lett., Vol.11, pp. 1044-1048, 2011.
  16. [16] P. M. Kosaka, V. Pini et al., “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol., Vol.9, pp. 1047-1053, 2014.
  17. [17] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B, Vol.54, pp. 3-15, 1999.
  18. [18] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., Vol.377, pp. 528-539, 2003.
  19. [19] S. Roy, J. H. Kim et al., “Surface Plasmon Resonance/Surface Plasmon Enhanced Fluorescence: An Optical Technique for the Detection of Multicomponent Macromolecular Adsorption at the Solid/Liquid Interface,” Langmuir, Vol.18, pp. 6319-6323, 2002.
  20. [20] K. Toma, M. Vala et al., “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express, Vol.21, pp. 10121-10132, 2013.
  21. [21] T. Neumann, M. L. Johansson et al., “Surface Plasmon Fluorescence Spectroscopy,” Adv. Funct. Mater., Vol.12, pp. 575-586, 2002.
  22. [22] K. Kajikawa, T. Okamoto, J. Takahara, and K. Okamoto, “Active Plasmonics,” Corona Publishing, Chap.5, 2013 (in Japanese).
  23. [23] H. Ashiba, M. Fujimaki et al., “Sensor chip design for increasing surface-plasmon-assisted fluorescence enhancement of the V-trench biosensor,” Jpn. J. Appl. Phys., Vol.55, pp. 67001, 2016.
  24. [24] H. Ashiba, Y. Sugiyama et al., “Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels,” Biosens. Bioelectron., Vol. 93, pp. 260-266, 2017.
  25. [25] M. Born and E. Wolf, “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light,” Pergamon, 6th ed., Chap. 1, 1980.
  26. [26] M. Polyanskiy, “Refractive index database,” [accessed April 17, 2017]
  27. [27] D. W. Lynch and W. R. Hunter, “Handbook of Optical Constants of Solids II,” Academic Press, p. 374, 1998.
  28. [28] D. W. Lynch and W. R. Hunter, “Handbook of Optical Constants of Solids,” Academic Press, p. 286, 1998.
  29. [29] M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, “Handbook of Optical Constants of Solids II,” Academic Press, p. 1059, 1998.
  30. [30] I. L. Medintz, H. T. Uyeda et al., “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater., Vol.4, pp. 435-446, 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 19, 2024