single-au.php

IJAT Vol.12 No.1 pp. 64-72
doi: 10.20965/ijat.2018.p0064
(2018)

Review:

Advances in Noninvasive Glucose Sensing Enabled by Photonics, Acoustics, and Microwaves

Takuro Tajima, Masahito Nakamura, Yujiro Tanaka, and Michiko Seyama

NTT Device Technology Labs, NTT Corporation
3-1 Morinosato, Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan

Corresponding author

Received:
June 20, 2017
Accepted:
November 23, 2017
Published:
January 5, 2018
Keywords:
photoacoustic, dielectric spectroscopy, noninvasive glucose sensor, biomedical, multiphysics-based sensing
Abstract

More than two decades have passed since the initial clinical trial of noninvasive glucose sensing using optical absorption spectroscopy. Today, noninvasive sensing technologies are expected to meet the increasing demand for high-quality diabetes management. Here, we review the latest advances in noninvasive glucose sensing research, focusing on how photonics-, acoustic- and electronics-based sensing technologies have played key roles in the development of the first noninvasive glucose sensors. We also present our recent work on multiphysics-based glucose sensing using near-infrared photoacoustic spectroscopy and broadband dielectric spectroscopy and a comparison with other competitive technologies.

Cite this article as:
T. Tajima, M. Nakamura, Y. Tanaka, and M. Seyama, “Advances in Noninvasive Glucose Sensing Enabled by Photonics, Acoustics, and Microwaves,” Int. J. Automation Technol., Vol.12, No.1, pp. 64-72, 2018.
Data files:
References
  1. [1] International Diabetics Federation: Diabetes Atlas Seventh Edition 2015. http://www.diabetesatlas.org/ [accessed January 14, 2017]
  2. [2] D. C. Klonoff, “Noninvasive Blood Glucose Monitoring,” Diabetes Care, Vol.20, No.3, pp. 433-437, 1997.
  3. [3] S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: A review,” Analytica Chimica Acta, Vol.750, No.31, pp. 16-27, 2012.
  4. [4] K. Maruo and Y. Yamada, “Near-infrared noninvasive blood glucose prediction without using multivariate analyses: introduction of imaginary spectra due to scattering change in the skin,” J. Biomed. Opt., Vol.20, No.4, 047003, 2015.
  5. [5] Y. Uwadaira, A. Ikehata, A. Momose, and M. Miura, “Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement,” Biomed. Opt. Exp., Vol.7, No.7, pp. 2729-2737, 2016.
  6. [6] S. Liakat, K. A. Bors, L. Xu, C. M. Woods, J. Doyle, and C. F. Gmachl, “Noninvasive in vivo glucose sensing on human subjects using mid-infrared light,” Biomedical Optics Express, Vol.5, No.7, pp. 2397-2404, 2014.
  7. [7] R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Optics Letters, Vol.26, No.13, pp. 992-994, 2001.
  8. [8] K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determination by a pulsed photoacoustic technique: an experimental study using a gelatin-based tissue phantom,” Phys. Med. Biol., Vol.38, pp. 1911-1922, 1993.
  9. [9] M. Kinnunen and R. Myllylä, “Effect of glucose on photoacoustic signals at the wavelengths of 1064 and 532 nm in pig blood and Intralipid,” J. Phys. D: Appl. Phys., Vol.38, pp. 2654-2661, 2005.
  10. [10] H. A. Mackenzie, G. B. Christison, P. Hodgson, and D. Blanc, “A laser photoacoustic sensor for analyte detection in aqueous systems,” Sensors and Actuators B, Vol.11, pp. 213-220, 1993.
  11. [11] K. M. Quan, E. M. Johnston, and H. A. MacKenzie, “Noninvasive glucose monitoring using near-infrared photoacoustic spectroscopy,” Conf. on Lasers and Electro-Optics Europe, 1994.
  12. [12] H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in Photoacoustic Noninvasive Glucose Testing,” Clinical Chemistry, Vol.45, No.9, pp. 1587-1595, 1999.
  13. [13] M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Non-invasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem., Vol.38, pp. 1618-1622, 1992.
  14. [14] M. A. Pleitez et al., “In Vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy,” Anal. Chem., Vol.85, pp. 1013-1020, 2013.
  15. [15] J. Kottmann, J. M. Rey, and M. W. Sigrist, “Mid-Infrared Photoacoustic Detection of Glucose in Human Skin: Towards Non-Invasive Diagnostics,” Sensors, Vol.16, No.10, pp. 1663-1676, 2016.
  16. [16] K. Naganuma, T. Tajima, Y. Okabe, and S. Sudo, “Constituent concentration measuring apparatus and constituent concentration measuring apparatus controlling method,” US Patent, 8332006, Dec. 11, 2012.
  17. [17] L. V. Wang (Ed.), “Photoacoustic Imaging and Spectroscopy (1st ed.),” CRC Press, 2009.
  18. [18] S. Camou, “Phase Difference Optimization of Dual-Wavelength Excitation for the CW-Photoacoustic-Based Noninvasive and Selective Investigation of Aqueous Solutions of Glucose,” Sensors, Vol.15, pp. 16358-16371, 2015.
  19. [19] Y. Tanaka, C. Purtill, T. Tajima, M. Seyama, and H. Koizumi, “Sensitivity improvement on CW dual-wavelength photoacoustic spectroscopy using acoustic resonant mode for noninvasive glucose monitor,” IEEE Sensors, 2016.
  20. [20] G. Spanner and R. Nieβner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes,” Fresenius J. Anal. Chem., Vol.354, pp. 306-310, 1996.
  21. [21] Y. Tanaka, Y. Higuchi, and S. Camou, “Noninvasive measurement of aqueous glucose solution at physiologically relevant blood concentration levels with differential continuous-wave laser photoacoustic technique,” IEEE Sensors, 2015.
  22. [22] T. Tajima, Y. Okabe, Y. Tanaka, and M. Seyama, “Linearization Technique for dual-wavelength CW photoacoustic detection of glucose,” IEEE Sensors J., Vol.17, No.16, pp. 5079-5086, 2017.
  23. [23] K. Shiraga, T. Suzuki, N. Kondo, T. Tajima, M. Nakamura, H. Togo, A. Hirata, K. Ajito, and Y. Ogawa, “Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network,” J. Chem. Phys., Vol.142, 234504, June 2015.
  24. [24] J.-C. Chien, M. Anwer, E.-C. Yeh, L.P. Lee, and A. M. Niknejad, “A Microwave Reconfigurable Dielectric-based Glucose Sensor with 20 mg/dL Sensitivity at Sub-nL Sensing Volume in CMOS,” 2015 IEEE MTT-S Int. Microwave Symp. Dig., June 2015.
  25. [25] T. Kurabayashi, K. Konishi, S. Yodokawa, and S. Kosaka, “Reflection Spectroscopy on Solutions of Biological Materials in Millimeter Wave Frequency,” 2015 Int. Conf. Infrared, Millimeter, and Terahertz waves, Dig., Aug. 2015.
  26. [26] H. Choi, J. Naylon, S. Luzio, J. Beutler, J. Birchall, C. Martin, and A. Porch, “Design and In Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor,” IEEE Trans. Microwave Theory & Tech., Vol.63, No.10, pp. 3016-3024, Oct. 2015.
  27. [27] M. Hofmann, G. Fischer, R. Weigel, and D. Kissinger, “Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications,” IEEE Trans. Microwave Theory & Tech., Vol.61, No.5, pp. 2195-2204, May 2013.
  28. [28] P. H. Siegel, Y. L. Lee, and V. Pikov, “Millimeter-Wave Non-Invasive Monitoring of Glucose in Anesthetized Rats,” 2014 Int. Conf. Infrared, Millimeter, and Terahertz Waves, Dig., Sep. 2014.
  29. [29] M. A. Suster and P. Mohseni, “An RF/Microwave Microfluidic Sensor Based on a Center-Gapped Microstrip Line for Miniaturized Dielectric Spectroscopy,” 2013 IEEE MTT-S Int. Microwave Symp. Dig., June 2012.
  30. [30] J.-C. Chien, M. Anwer, E.-C. Yeh, L. P. Lee, and A. M. Niknejad, “A 1-50 GHz Dielectric Spectroscopy Biosensor with Integrated Receiver Front-end in 65nm CMOS,” 2013 IEEE MTT-S Int. Microwave Symp. Dig., June 2012.
  31. [31] M. M. Bajestan, A. A. Helmy, H. Hedayati, and K. Entesari, “A 0.62-10 GHz CMOS Dielectric Spectroscopy System for Chemical/Biological Material Characterization,” 2014 IEEE MTT-S Int. Microwave Symp. Dig., June 2014.
  32. [32] K. Grenier, D. Dubuc, P.-E. Poleni, M. Kumemura, H. Toshiyoshi, T. Fujii, and H. Fujita, “Integrated Broadband Microwave and Microfluidic Sensor Dedicated to Bioengineering,” IEEE Trans. Microwave Theory & Tech., Vol.57, No.12, pp. 3246-3253, Dec. 2009.
  33. [33] Y. Ning, C. Multari, X. Luo, C. Palego, X. Cheng, J.-C. M. Hwang, A. Denzi, C. Merla, F. Apollonio, and M. Liberti, “Broadband Electrical Detection of Individual Biological Cells,” IEEE Trans. Microwave Theory & Tech., Vol.62, No.9, pp. 1905-1911, Sep. 2014.
  34. [34] M. Nakamura, T. Tajima, K. Ajito, and H. Koizumi, “Selectivity-Enhanced Glucose Measurement in Multicomponent Aqueous Solution by Broadband Dielectric Spectroscopy,” IEEE MTT-S Int. Microw. Symp. Dig., 2016.
  35. [35] T. Tajima, M. Nakamura, K. Shiraga, Y. Ogawa, K. Ajito, and H. Koizumi, “Double-beam CW THz system with photonic phase modulator for sub-THz glucose hydration sensing,” IEEE MTT-S Int. Microw. Symp. Dig., 2016.
  36. [36] R. Pethig, “Dielectric Properties of Biological Materials: Biophysical and Medical Applications,” IEEE Trans. Electrical Insulation, Vol.EI-19, No.5, pp. 453-474, Oct. 1984.
  37. [37] C. Cametti, S. Marchetti, C. M. C. Gambi, and G. Onori, “Dielectric Relaxation Spectroscopy of Lysozyme Aqueous Solutions: Analysis of the δ-Dispersion and the Contribution of the Hydrated Water,” J. Phys. Chem. B., Vol.115, pp. 7144-7153, May 2011.
  38. [38] R. Buchner, G. T. Hefter, and P. M. May, “Dielectric Relaxation of Aqueous NaCl Solutions,” J. Phys. Chem. A., Vol.103, No.1, pp. 1-9, Jan. 1999.
  39. [39] R. Wang, M. Nakamura, Y. Tanaka, and T. Tajima, “Frequency-range Optimized Preprocessing Methods for Quantitative Analysis of Glucose in Blood Serum from Broadband Dielectric Spectroscopy,” IEEE EMBC 2017, July 2017.
  40. [40] R. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, “Noninvasive Continuous Glucose Monitoring Using Photoacoustic Technology Results from the First 62 Subjects,” Diabetes Technology & Therapeutics, Vol.9, No.1, pp. 68-74, Feb. 2007.
  41. [41] R. A. Gabbay and S. Sivarajah, “Optical Coherence Tomography-Based Continuous Noninvasive Glucose Monitoring in Patients with Diabetes,” Diabetes Technology & Therapeutics, Vol.10, No.3, pp. 188-193, 2008.
  42. [42] H. Choi, S. Luzio, J. Beutler, and A. Porch, “Microwave Noninvasive Blood Glucose Monitoring Sensor: Human Clinical Trial Results,” 2017 IEEE MTT-S Int. Microwave Symp. Dig., June 2017.
  43. [43] K. Song, U. Ha, S. Park, J. Bae, and H.-J. Yoo, “An Impedance and Multi-Wavelength Near-Infrared Spectroscopy IC for Non-Invasive Blood Glucose Estimation,” IEEE J. of Solid-State Circuits, Vol.50, No.4, pp. 1025-1036, 2015.
  44. [44] I. Harman-Boehm, A. Gal, A. M. Raykhman, E. Naidis, and Y. Mayzel, “Noninvasive Glucose Monitoring: Increasing Accuracy by Combination of Multi-Technology and Multi-Sensors,” J. of Diabetes Science and Technology, Vol.4, Issue 3, May 2010.
  45. [45] S. Haxha and J. Jhoja, “Optical Based Noninvasive Glucose Monitoring Sensor Prototype,” IEEE Photonics J., Vol.8, No.6, 6805911, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 11, 2018