IJAT Vol.11 No.5 pp. 691-698
doi: 10.20965/ijat.2017.p0691


Re-Evaluation of Calibration and Measurement Capabilities of Pitch Calibration Systems Designed by Using the Diffraction Method

Ichiko Misumi*,†, Jun-ichiro Kitta**, Ryosuke Kizu*, and Akiko Hirai*

*National Institute of Advanced Science and Technology (AIST)
AIST Tsukuba Central 3 Bldg., 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan

Corresponding author

**Japan Quality Assurance Organization (JQA), Tokyo, Japan

November 21, 2016
July 4, 2017
Online released:
August 30, 2017
September 5, 2017
one-dimensional grating, optical diffraction method, grazing-incidence small-angle X-ray scattering (GI-SAXS), atomic force microscopy, calibration

One-dimensional grating is one of the most important standards that are used to calibrate magnification of critical-dimension scanning electron microscopes (CD-SEMs) in the semiconductor industry. Long-term stability of pitch calibration systems is required for the competence of testing and calibration laboratories determined in ISO/IEC 17025:2005. In this study, calibration and measurement capabilities of two types of pitch calibration systems owned by a calibration laboratory are re-evaluated through comparison to a reference value and its expanded uncertainty given by a metrological atomic force microscope (metrological AFM) at National Metrology Institute of Japan (NMIJ), AIST. The calibration laboratory’s pitch calibration systems are designed by using the diffraction method (optical and X-ray).

Cite this article as:
I. Misumi, J. Kitta, R. Kizu, and A. Hirai, “Re-Evaluation of Calibration and Measurement Capabilities of Pitch Calibration Systems Designed by Using the Diffraction Method,” Int. J. Automation Technol., Vol.11 No.5, pp. 691-698, 2017.
Data files:
  1. [1] ISO 16700:2004, “Microbeam analysis – Scanning electron microscopy – Guidelines for calibrating image magnification,” 2004.
  2. [2] F. Meli, “CCL-S1 Nanometrology: one-dimensional gratings, Final report,” 2001.
  3. [3] J. E. Decker, E. Buhr, A. Diener, B. Eves, A. Kueng, F. Meli, J. R. Pekelsky, S. P. Pan, and B. C. Yao, “Report on an international comparison of one-dimensional (1D) grating pitch,” Metrologia, Vol.46, 04001, 2009.
  4. [4] E. Buhr, W. Michaelis, A. Diener, and W. Mirandé, “Multi-wavelength VIS/UV optical diffractometer for high-accuracy calibration of nano-scale pitch standards,” Meas. Sci. Technol., Vol.18, pp. 667-674, 2007.
  5. [5] J. Kitta, F. Kubota, and H. Mine, “Calibration of One-dimensional Diffraction Grating with an Optical Diffraction Pitch Calibration Apparatus,” Proc. of First Int. Symposium on Standard Materials and Metrology for Nanotechnology (SMAM-1), pp. 119-125, 2004.
  6. [6] J. Kitta, H. Mine, S. Gonda, K. Yoshizaki, I. Misumi, T. Takatsuji, T. Kurosawa, Y. Nakayama, K. Sasada, S. Yoneda, and T. Mizuno, “Development of a 100-nm Pitch Calibration System with a DUV Laser Diffractometer,” Proc. of Second Int. Symposium on Standard Materials and Metrology for Nanotechnology (SMAM-2), pp. 80-87, 2006.
  7. [7] I. Misumi, J. Kitta, H. Fujimoto, S. Gonda, Y. Azuma, K. Maeda, T. Kurosawa, Y. Ito, K. Omote, Y. Nakayama, and H. Kawada, “25 nm pitch comparison between a traceable x-ray diffractometer and a metrological atomic force microscope,” Meas. Sci. Technol., Vol.23, 015002, 2012.
  8. [8] I. Misumi, S. Gonda, Q. Huang, T. Keem, T. Kurosawa, A. Fujii, N. Hisata, T. Yamagishi, H. Fujimoto, K. Enjoji, S. Aya, and H. Sumitani, “Sub-hundred nanometre pitch measurements using an AFM with differential laser interferometers for designing usable lateral scales,” Meas. Sci and Tech., Vol.16, pp. 2080-2090, 2005.
  9. [9] I. Misumi, M. Lu, H. Tanaka, K. Sugawara, S. Gonda, and T. Kurosawa, “Nanometric lateral scale development with Si/SiO2 multilayer thin-film structures and improvement of uncertainty evaluation using analysis of variance,” Meas. Sci. Technol., Vol.19, 045101, 2008.
  10. [10] I. Misumi, S. Gonda, T. Kurosawa, Y. Tanimura, N. Ochiai, J. Kitta, F. Kubota, M. Yamada, Y. Fujiwara, Y. Nakayama, and K. Takamasu, “Submicrometre-pitch intercomparison between optical diffraction, scanning electron microscope and atomic force microscope,” Meas. Sci. Technol., Vol.14, pp. 2065-2074, 2003.
  11. [11] I. Misumi, S. Gonda, O. Sato, M. Yasutake, R. Kokawa, T. Fujii, N. Kojima, S. Kitamura, R. Tamochi, J. Kitta, and T. Kurosawa, “Round-robin measurements of 100- and 60-nm scales among a deep-ultraviolet laser diffractometer, a scanning electron microscope and various atomic force microscopes,” Meas. Sci. Technol., Vol.18, pp. 803-812, 2007.
  12. [12] ISO/IEC 17025:2005, “General requirements for the competence of testing and calibration laboratories,” 2005.
  13. [13] I. Misumi, S. Gonda, T. Kurosawa, Y. Azuma,T. Fujimoto, I. Kojima, T. Sakurai, T. Ohmi, and K. Takamasu, “Reliability of parameters of associated base straight line in step height samples: Uncertainty evaluation in step height measurements using nanometrological AFM,” Precision Engineering, Vol.30, pp. 13-22, 2016.
  14. [14] K. Sugawara, O. Sato, K. Yoshizaki, I. Misumi, S. Gonda, T. Takatsuji, and J. Kitta, “Effects of angle misalignments on pitch measurements of two-dimensional gratings using an AFM,” J. of the Chinese Society of Mechanical Engineers, Vol.27, No.5, pp. 531-534, 2006.
  15. [15] I. Misumi, K. Naoi, K. Sugawara, and S. Gonda, “Profile surface roughness measurement using metrological atomic force microscope and uncertainty evaluation,” Measurement, Vol.73, pp. 295-303, 2015.
  16. [16] I. Misumi, K. Takahata, K. Sugawara, S. Gonda, and K. Ehara, “Extension of the gravity center method for diameter calibration of polystyrene standard particles with metrological AFM,” Proc. of SPIE, Vol.8378, 83780J, 2012.
  17. [17] S. Gonda, K. Kinoshita, H. Noguchi, H. Koyanagi, K. Murayama, and T. Terasawa, “AFM measurement of linewidth with sub-nanometer scale precision,” Proc. of SPIE, Vol.5752, pp. 156-162, 2005.
  18. [18] A. Yacoot and L. Koenders, “Recent developments in dimensional nanometrology using AFMs,” Meas. Sci. Technol., Vol.22, 122001, 2011.
  19. [19] T. Watanabe, H. Fujimoto, K. Nakayama, T. Masuda, and M. Kajitani, “Automatic high-precision calibration system for angle encoder,” Proc. of SPIE, Vol.4401, pp. 267-271, 2001.
  20. [20] Y. Ito, K. Inaba, K. Omote, Y. Wada, and S. Ikeda, “Characterization of submicron-scale periodic grooves by grazing incidence ultra-small-angle x-ray scattering,” Japan. J. Appl. Phys., Vol.46, L773, 2007.
  21. [21] Y. Ito, K. Omote, Y. Okazaki, Y. Nakayama, and H. Kawada, “Calibration of 25-nm pitch grating reference by high-resolution grazing incidence x-ray diffraction,” Proc. of SPIE, Vol.7638, 763810, 2010.
  22. [22] ISO/IEC 17043:2010, “Conformity assessment – General requirements for proficiency testing,” 2010.
  23. [23] W. Haessler-Grohne, T. Dziomba, C. G. Frase, H. Bosse, and J. Prochazka, “Characterization of a 100-nm 1D pitch standard by metrological SEM and SFM,” Proc. of SPIE, Vol.5375, pp. 426-436, 2004.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 19, 2024