single-au.php

IJAT Vol.11 No.3 pp. 501-508
doi: 10.20965/ijat.2017.p0501
(2017)

Paper:

A Mechatronic Pneumatic Device to Improve Diastolic Function by Intermittent Action on Lower Limbs

Andrea Manuello Bertetto*1,†, Silvia Meili*1, Carlo Ferraresi*2, Daniela Maffiodo*2, Antonio Crisafulli*3, and Alberto Concu*4

*1Laboratory of Applied Mechanics and Robotics, Department of Mechanical, Chemical and Materials Engineering, University of Cagliari
Via Marengo 2, Cagliari 09123, Italy

Corresponding author

*2Group of Automation and Robotics, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy

*3Laboratory of Sports Physiology, Department of Medical Sciences, University of Cagliari, Cagliari, Italy

*42C Technologies Inc., Spinoff of University of Cagliari, Cagliari, Italy

Received:
October 3, 2016
Accepted:
March 6, 2017
Online released:
April 28, 2017
Published:
May 5, 2017
Keywords:
pneumatic flexible actuators, left ventricle end diastolic volume, mechatronic devices for rehabilitation, thoracic electrical bioimpedance, walking disability
Abstract

Individuals with walking disability, as a result of pathological conditions or traumas, show a reduction in left ventricle end diastolic volume (EDV). In fact EDV is closely related to the blood pressure gradient between the postcaval vein and the right atrium which, during locomotion, is partially due to the calf veins squeezing caused by the rhythmic contraction of the triceps surae and the crushing of the sole of the foot’s veins. In this study, a mechatronic device was applied to nineteen healthy voluntary participants’ lower limbs to test cardiodynamic response to a mechanical intermittent stimulation. The device consisted of inflatable bladders embedded in two shells and acting on the skin of the calf and foot of both legs. The pressure trend on the legs was regulated by a portable programmable logic controller. During the compression protocol to the legs, which involved some sequences of activation-deactivation following a peristaltic compression having a caudal-rostral trend, EDV, assessed by the impedance cardiography technique, increased of about 10% up the pre-test value. The legs compression protocol imposed by means of our pneumatic device might be useful to avoid the negative consequences for cardiovascular performance caused by de-conditioning status linked to walking disabilities.

References
  1. [1] A. Concu, “Cardiovascular adjustments during exercise: Points and counterpoints,” in New Insight into Cardiovascular apparatus during exercise, Physiological and physio-pathological aspects, A Crisafulli and A Concu (Eds.), Kerala (India): Transworld Reseach Network, pp. 61-83, 2007.
  2. [2] V. Utomi, D. Oxborough, G. P. Whyte, J. Somauroo, S. Sharma, R. Shave, and G. Atkinson, “Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s heart,” Heart., Vol.99, pp. 1727-1733, 2013.
  3. [3] C. Mihl, W. R. M. Dassen, and H. Kuipers, “Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes,” Arch. Surg., Vol.127, pp. 727-730, 1992.
  4. [4] C. D. Waring, C. Vicinanza, A. Papalamprou, A. J. Smith, S. Purushothaman, D. F. Goldspink, B. Nadal-Ginard, D. Torella, and G. M. Ellison, “The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation and new myocite formation,” Eur. heart J., Vol.35, pp. 2722-2731, 2012.
  5. [5] W. H. Martin 3rd, E. F. Coyle, A. A. Bloomfield, and A. A. Ehsan, “Effects of physical deconditioning after intense endurance training on left ventricular dimensions and stroke volume,” J. Am. Coll. Cardiol., Vol.7, pp. 982-989, 1986.
  6. [6] A. Bringard, S. Pogliaghi, A. Adami, G. De Roia, F. Lador, D. Lucini, P. Pizzinelli, C. Capelli, and G. Ferretti, “Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans,” Respir. Physiol. Neurobiol., Vol.172, pp. 53-62, 2010.
  7. [7] A. M. Bertetto, S. Meili, A. Concu, and A. Crisafulli, “An Inflatable Pneumatic System for Blood Pressure Recovery,” Mech. Based Des. Struct. and Mach., Vol.40, pp. 506-518, 2012.
  8. [8] A. Crisafulli, R. Milia, S. Vitelli, M. Caddeo, F. Tocco, F. Melis, and A. Concu, “Hemodynamic responses to metaboreflex activation: insights from spinal cord-injured humans,” Eur. J. Appl. Physiol., Vol.106, pp. 525-533, 2009.
  9. [9] A. Crisafulli, E. Salis, G. Pittau, L. Lorrai, F. Tocco, F. Melis, P. Pagliaro, and A. Concu, “Modulation of cardiac contractility by muscle metaboreflex following efforts of different intensities in humans,” Am. J. Physiol. Heart Circ. Physiol., Vol.291, pp. 3035-3042, 2006.
  10. [10] A. Crisafulli, E. Salis, F. Tocco, F. Melis, R. Milia, G. Pittau, M. A. Caria, R. Solinas, L. Meloni, P. Pagliaro, and A. Concu, “Impaired central hemodynamic response and exaggerated vasoconstriction during muscle metaboreflex activation in heart failure patients,” Am. J. Physiol. Heart Circ. Physiol., Vol.292, pp. 2988-2996, 2007.
  11. [11] A. Concu and C. Marcello, “Stroke volume response to progressive exercise in athletes engaged in different training modes,” Eur. J. Appl. Physiol., Vol.66, pp. 11-17, 1993.
  12. [12] W. G. Kubicek, J. N. Karnegis, R. P. Patterson, D. A. Witsoe, and R. H. Mattson, “Development and evaluation of an impedance cardiac output system,” Aerosp. Med., Vol.37, pp. 1208-1212, 1966.
  13. [13] A. Concu, M. Scorcu, C. Marcello, A. Rocchitta, A. Molari, A. Esposito, and G. Orani, “Unchanging cardiac activity while increasing respiratory activity at the start of exercise in man: a beat-by-beat analysis by means of the impedance cardiography method,” Cardiologia., Vol.35, pp. 845-850, 1990.
  14. [14] D. P. Bernstein and H. J. Lemmens, “Stroke volume equation for impedance cardiography,” Med. Biol. Eng. Comput., Vol.43 pp. 443-450, 2005.
  15. [15] M. D. Malone, P. L. Cisek, A. J. Jr. Comerota, B. Holland, I. G. Eid, and A. J. Comerota, “High-pressure, rapid-inflation pneumatic compression improves venous hemodynamics in healthy volunteers and patients who are post-thrombotic,” J. Vasc. Surg., Vol.29, pp. 593-599, 1999.
  16. [16] G. Ramaswami, M. D’Ayala, H. Hollier, R. Deutsch, and A. J. McElhinney, “Rapid foot and calf compression increases walking distance in patients with intermittent claudication: results of a randomized study,” J. Vasc. Surg., Vol.41, pp. 794-801, 2005.
  17. [17] K. T. Delis and A. L. Knaggs, “Duration and amplitude decay of acute arterial leg inflow enhancement with intermittent pneumatic leg compression: An insight into the implicated physiologic mechanisms,” J. Vasc. Surg., Vol.42, pp. 717-725, 2005.
  18. [18] M. T. Hopman, M. Monroe, C. Dueck, W. T. Phillips, and J. S. Skinner, “Blood redistribution and circulatory responses to submaximal arm exercise in persons with spinal cord injury,” Scand. J. Rehabil. Med., Vol.30, pp. 167-174, 1998.
  19. [19] M. B. Stenger, A. K. Brown, S. M. C. Lee, J. P. Locke, and S. H. Platts, “Gradient compression garments as a countermeasure to port-spaceflight orthostatic intolerance,” Aviat. Space Environ. Med., Vol.81, pp. 883-887, 2010.
  20. [20] G. M. Davis, F. J. Servedio, R. M. Glaser, S. C. Gupta, and A. G. Suryaprasad, “Cardiovascular responses to arm cranking and FNS-induced leg exercise in paraplegics,” J. Appl. Physiol., Vol.69, pp. 671-677, 1990.
  21. [21] R. M. Glaser, “Functional neuromuscular stimulation: exercise conditioning of spinal cord injured patients,” Int. J. Sports Med., Vol.15, pp. 142-148, 1994.
  22. [22] X. Li, T. Noritsugu, M. Takaiwa, and D. Sasaki, “Design of Wearable Power Assist Wear for Low Back Support Using Pneumatic Actuators,” Int. J. of Automation Technology, Vol.7, No.2, pp. 228-236, 2013.
  23. [23] A. M. Bertetto and M. Ruggiu, “A Novel Fluidic Bellows Manipulator,” J. of Rob. and Mech., Vol.16, pp. 604-661, 2004.
  24. [24] C. Ferraresi, W. Franco, and A. M. Bertetto, “Flexible Pneumatic Actuators: a comparison between the McKibben and the straight fibres muscle,” J. Robotics and Mechatronics., Vol.13, pp. 56-63, 2001.
  25. [25] C. Ferraresi, W. Franco, and G. Quaglia, “A novel bi-directional deformable fluid actuator,” Proc. of the Institution of Mechanical Engineers, Part C: J. of Mechanical Engineering Science, Vol.228, Issue 15, pp. 2799-2809, 2014.
  26. [26] C. Ferraresi, D. Maffiodo, and H. Hajimirzaalian, “A model-based method for the design of intermittent pneumatic compression systems acting on humans,” Proc. of the Institution of Mechanical Engineers, Part H: J. of Engineering in Medicine, Vol.228, No.2, pp. 118-126, 2014.
  27. [27] C. Ferraresi, H. Hajimirzaalian, and D. Maffiodo, “Identification of Physical Parameters in a Robotized IPC Device Interacting with Human,” Applied Mechanics and Materials, Vol.490-491, pp. 1729-1733, 2014.
  28. [28] C. Ferraresi, D. Maffiodo, and H. Hajimirzaalian, “Simulation and control of a robotic device for cardio-circulatory rehabilitation,” Advances in Intelligent Systems and Computing, Vol.371, pp. 357-365, 2016.
  29. [29] D. Maffiodo, G. De Nisco, D. Gallo, A. Audenino, U. Morbiducci, and C. Ferraresi, “A reduced-order model-based study on the effect of intermittent pneumatic compression of limbs on the cardiovascular system,” Proc. of the Institution of Mechanical Engineers, Part H, J. of Engineering in Medicine, Vol.230, pp. 279-287, 2016.
  30. [30] K. T. Delis, G. Slimani, H. M, Hafez, and A. N. Nicolaides, “Enhancing venous outflow in the lower limb with intermitent pneumatic compression. A comparative analysis on the effect of foot vs. Calf vs. Foot and calf compression,” Eur J Vasc Surg., Vol.19, pp. 250-260, 2000.
  31. [31] R. V. Luepker, J. R. Michael, and J. R. Warbasse, “Transthoracic electrical impedance: quantitative evaluation of a No.invasive measure of thoracic fluid volume,” Am. Heart J., Vol.85, pp. 83-93, 1973.
  32. [32] H. Okutani, T. Fujinami, and K. Nakamura, “Studies on mean thoracic impedance (Zo),” Proc. of the 5th Int. Conf. on Electrical Bioimpedance, pp. 31-34, 1981.
  33. [33] A. Crisafulli, C. Carta, F. Melis, F. Tocco, F. Frongia, U. M. Santoboni, P. Pagliaro, and A. Concu, “Haemodynamic responses following intermittent supramaximal exercise in athletes,” Exp. Physiol., Vol.89, pp. 665-674, 2004.
  34. [34] A. Crisafulli, F. Melis, V. Orrù, R. Lener, C. Lai, and A. Concu, “Hemodynamic during a postexertional asystolia in a healthy athlete: a case study,” Med. Sci. Sport Exer., Vol.32, pp. 4-9, 1999.
  35. [35] A. Concu, C. Marcello, A. Esposito, C. Ciuti, A. Rocchitta, and P. L. Montaldo, “Thoracic fluid volume measured by electrical bioimpedance: a simple method for non-invasive assessment of preload changes during exercise,” Proc. of the 6th Mediterranean Conf. on Medical and Biological Engineering, pp. 1261-1264, 1992.
  36. [36] J. R. Schairer, P. D. Stein, S. Keteyian, F. Fedel, J. Ehrman, M. Alam, J. W. Henry, and T. Shaw, “Left ventricular response to submaximal exercise in endurance trained athletes and sedentary adults,” Am. J. Cardiol., Vol.70, pp. 930-933, 1992.
  37. [37] D. P. Bernstein, “A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale,” Crit Care Med., Vol.14, pp. 904-909, 1986.
  38. [38] F. Tocco, A. Crisafulli, R. Milia, E. Marongiu, R. Mura, R. Roberto, F. Todde, D. Concu, S. Melis, F. Velluzzi, A. Loviselli, A. Concu, and F. Melis, “Nervous facilitation in cardiodynamic response of exercising athletes to superimposed mental tasks: implications in depressive disorder,” Clin Pract Epidemiol Ment Health., Vol.11, pp. 166-173, 2015.
  39. [39] A. Bickel, A. Shturman, M. Sergeiev, S. Ivry, A. Eitan, and A. S. Atar, “Hemodynamic effect and safety of intermittent sequential pneumatic compression leg sleeves in patients with congestive heart failure,” J. Cardiac Fail., Vol.20, pp. 739-746, 2014.
  40. [40] E. Piotrowicz, M. F. Piepoli, T. Jaarsma, E. Lambrinou, A. J. Coats, J. P. Schmid, U. Corrà, P. Agostoni, K. Dickstein, P. M. Seferović, S. Adamopoulos, and P. P. Ponikowski, “Telerehabilitation in heart failure patients: the evidence and the pitfalls,” Int. J. Cardiol., Vol.220, pp. 408-413, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Oct. 16, 2017