Paper:
Self-Powered Flywheel-Infinitely Variable Transmission Actuator for Artificial Knee Joints
Roberta Aló†, Francesco Bottiglione, and Giacomo Mantriota
Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari
Viale Japigia 182, Bari 70126, Italy
†Corresponding author
- [1] J. M. Donelan, Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, and A. D. Kuo, “Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort,” Science, Vol.319, No.5864, pp. 807-810, 2008.
- [2] P. Cherelle, G. Mathijssen, Q. Wang, B. Vanderborght, and D. Lefeber, “Advances in Propulsive Bionic Feet and Their Actuation Principles,” Advances in Mechanical Engineering, Vol.6, 2014.
- [3] J. L. Pons, “Wearable Robots: Biomechatronic Exoskeletons,” John Wiley & Sons Ltd. Chichester UK, 2008.
- [4] A. A. M. Faudz, N. H. I. M. Lazim, and K. Suzumori, “Modeling and Force Control of Thin Soft McKibben Actuator,” Int. J. of Automation and Technology, Vol.10, No.4, pp. 487-493, 2016.
- [5] T. Nozaki and T. Noritsugui, “Motion Analysis of McKibben Type Pneumatic Rubber Artificial Muscle with Finite Element Method,” Int. J. of Automation and Technology, Vol.8, No.2, pp. 147-158, 2014.
- [6] H. Kobayash, T. Aida, and T. Hashimoto, “Muscle Suit Development and Factory Application,” Int. J. of Automation and Technology, Vol.3, No.6, pp. 709-715, 2009.
- [7] J. E. Pratt, B. T. Krupp, C. J. Morse, and S. H. Collins, “The RoboKnee: an exoskeleton for enhancing strength and endurance during walking,” In Proc. 2004 IEEE Int. Conf. on Robotics and Automation (ICRA 2004), Vol.3, pp. 2430-2435, 2004.
- [8] G. Carpino, D. Accoto, F. Sergi, N. L. Tagliamonte, and E. Guglielmelli, “A novel compact torsional spring for series elastic actuators for assistive wearable robots,” J. of Mechanical Design, Vol.134, No.12, 2012.
- [9] B. J. Bergelin and P. A. Voglewede, “Design of an active ankle-foot prosthesis utilizing a four-bar mechanism,” Vol.134, No.6, 2012.
- [10] D. F. B. Haeufle, M. D. Taylor, S. Schmitt, and H. Geyer, “A clutched parallel elastic actuator concept: Towards energy efficient powered legs in prosthetics and robotics,” In 2012 4th IEEE RAS EMBS Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob), pp. 1614-1619, 2012.
- [11] J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F. C. v. d. Helm, and H. v. d. Kooij, “A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots,” The Int. J. of Robotics Research, Vol.25, No.3, pp. 261-281, 2006.
- [12] G. Mathijssen, B. Brackx, M. V. Damme, D. Lefeber, and B. Vanderborght, “Series-parallel elastic actuation (SPEA) with intermittent mechanism for reduced motor torque and increased efficiency,” In 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5841-5846, 2013.
- [13] D. Paluska and H. Herr, “The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design,” Robotics and Autonomous Systems, Vol.54, No.8, pp. 667-673, 2006.
- [14] E. J. Rouse, L. M. Mooney, and H. M. Herr, “Clutchable serieselastic actuator: Implications for prosthetic knee design,” The Int. J. of Robotics Research, Vol.33, No.13, pp. 1611-1625, 2014.
- [15] M. Grimmer, M. Eslamy, and A. Seyfarth, “Energetic and Peak Power Advantages of Series Elastic Actuators in an Actuated Prosthetic Leg for Walking and Running,” Actuators, Vol.3, No.1, p. 1, 2014.
- [16] G. Grioli, S. Wolf, M. Garabini, M. Catalano, E. Burdet, D. Caldwell, R. Carloni, W. Friedl, M. Grebenstein, M. Laffranchi, D. Lefeber, S. Stramigioli, N. Tsagarakis, M. v. Damme, B. Vanderborght, A. Albu-Schaeffer, and A. Bicchi, “Variable stiffness actuators: The user’s point of view,” The Int. J. of Robotics Research, Vol.34, No.6, pp. 727-743, 2015.
- [17] R. Aló, F. Bottiglione, and G. Mantriota, “An Innovative Design of Artificial Knee Joint Actuator with Energy Recovery Capabilities,” ASME. J. of Mechanisms Robotics, Vol.8, No.1, 2015.
- [18] R. Aló, F. Bottiglione, and G. Mantriota, “Artificial knee joints actuators with energy recovery capabilities a comparison of performance,” J. of Robotics, 2016.
- [19] G. Bovi, M. Rabuffetti, P. Mazzoleni, and M. Ferrarin, “A multipletask gait analysis approach: Kinematic, kinetic and fEMGg reference data for healthy young and adult subjects,” Gait & Posture, Vol.33, No.1, pp. 6-13, 2011.
- [20] L. Mangialardi and G. Mantriota, “Power flows and efficiency in infinitely variable transmissions,” Mechanism and machine theory, Vol.34, No.7, pp. 973-994, 1999.
- [21] F. Bottiglione and G. Mantriota, “Reversibility of Power-Split Transmissions,” ASME. J. of Mechanical Design, Vol.133, No.8, pp. 084503-084503-5, 2011.
- [22] F. Bottiglione and G. Mantriota, “Effect of the ratio spread of CVU in automotive Kinetic Energy Recovery Systems,” J. of Mechanical Design, Vol.135, No.6, p. 061001, 2013.
- [23] G. Carbone, L. Mangialardi, and G. Mantriota, “A comparison of the performances of full and half toroidal traction drives,” Mechanism and Machine Theory, Vol.39, No.9, pp. 921-942, 2004.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.