Paper:
A Robot Gripper in Polymeric Material for Solid Micro-Meso Parts
Francesco Aggogeri†, Andrea Avanzini, Alberto Borboni, and Stefano Pandini
Department of Mechanical and Industrial Engineering, University of Brescia
via Branze 38, 25123 Brescia, Italy
†Corresponding author
- [1] R. Datta, S. Pradhan, and B. Bhattacharya, “Analysis and Design Optimization of a Robotic Gripper Using Multiobjective Genetic Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics:Ssystems, Vol.46, pp. 16-26, 2016.
- [2] J. Agnus, P. Nectoux, and N. Chaillet, “Overview of microgrippers and design of a micromanipulation station based on a MMOC microgripper,” Proc. IEEE Int. Symp. Computational Intelligence Robotics Automation, pp. 117-123, 2005.
- [3] W. S. N. Trimmer, “Microrobots and micromechanical systems,” Sens. Actuators, Vol.19, No.3, pp. 267-287, 1989.
- [4] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” Proceedings – IEEE International Conference on Robotics and Automation, pp. 348-353, 2000.
- [5] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Polysilicon microgripper,” Sensors and Actuators: A. Physical, Vol.33, pp. 221-227, 1992.
- [6] M. Kohl, B. Krevet, and E. Just, “SMA microgripper system,” Sensors and Actuators, A: Physical, Vol.97-98, pp. 646-652, 2002.
- [7] A. Nikoobin and M. Hassani Niaki, “Deriving and analyzing the effective parameters in microgrippers performance,” Scientia Iranica, Vol.19, pp. 1554-1563, 2012.
- [8] F. Beyeler, A. Neild, S. Oberti, D. J. Bell, Y. Sun, J. Dual, and B. J. Nelson, “Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field,” J. Microelectromech. Syst., Vol.7, No.15, 2007.
- [9] S. E. Istricteanu, “Studies and research on micro-grippers embedded in mechatronic systems used for micro-positioning,” Romanian Review Precision Mechanics, Optics and Mechatronics, pp. 169-174, 2013.
- [10] M. J. Madou, Fundamentals of Microfabrication, 2nd ed. Boca Raton, FL: CRC, 2002.
- [11] W. Wang, D. M. Lee, H. H. Lee, S. R. Lee, and S. H. Yang, “A compact mechanical gripper system for meso-scale parts using a ball-roller joint,” Advanced Materials Research, Vol.711, ed, pp. 477-481, 2013.
- [12] W. Ji, J. Li, J. Yang, S. Ding, and D. Zhao, “Analysis and validation for mechanical damage of apple by gripper in harvesting robot based on finite element method,” Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, Vol.31, pp. 17-22, 2015.
- [13] T. Matsunaga, G. Fau, R. Kozuki, T. Kazuki, and K. Ohnishi, “Gripper’s rotation of five DoF surgical robot by using coordinate transformation,” Proceedings - 2015 IEEE International Conference on Mechatronics, ICM 2015, pp. 52-57, 2015.
- [14] M. Vagaš and J. Varga, “Design of modular gripper for industrial robot,” Applied Mechanics and Materials, Vol.436, ed, pp. 351-357, 2013.
- [15] A. Bhattacharjee, B. Bepari, and S. Bhaumik, “Selection of robotic grippers under MCDM environment: An optimized trade Off technique,” Studies in Computational Intelligence, Vol.543, ed, pp. 141-158, 2014.
- [16] G. Fantoni, S. Capiferri, and J. Tilli, “Method for supporting the selection of robot grippers,” Procedia CIRP, pp. 330-335, 2014.
- [17] R. Kato and T. Arai, “Assessment of Mental Stress on Human Operators Induced by the Assembly Support in a Robot-Assisted “Cellular Manufacturing” Assembly System,” Int. J. of Automation Technology, Vol.3, No.5, pp. 569-579, 2009.
- [18] R. C. Luo, “Automatic Quick-Change Gripper Finger for Assembly Automation,” Proceedings of the International Conference on Assembly Automation, pp. 215-224, 1984.
- [19] J. Schmalz and G. Reinhart, “Automated selection and dimensioning of gripper systems,” Procedia CIRP, pp. 212-216, 2014.
- [20] G. Carbone, M. Ceccarelli, H. Kerle, and A. Raatz, “Design and Experimental Validation of a Microgripper,” Journal of Robotics and Mechatronics, Vol.13, No.3, pp. 319-325, 2001.
- [21] E. Murayama, Y. Yogosawa, Y. Kawakami, A. Horikawa, K. Shioda, and M. Ogawa, “Study on Control Performance with Consideration of Articulated Manipulators with Pneumatic Cylinders,” Int. J. of Automation Technology, Vol.8, No.2, pp. 159-168, 2014.
- [22] A. J. Sanchez-Salmeron, R. Lopez-Tarazon, R. Guzman-Diana, and C. Ricolfe-Viala, “Recent development in micro-handling systems for micro-manufacturing,” Journal of Materials Processing Technology, 167, pp. 499-507, 2005.
- [23] F. Aggogeri, A. Borboni, A. Merlo, N. Pellegrini, and R. Ricatto, “Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control,” Sensor, Vol.16, No.10, 1577, 2016.
- [24] J. Y. Wang and C. C. Lan, “A constant-force compliant gripper for handling objects of various sizes,” Journal of Mechanical Design, Transactions of the ASME, Vol.136, 2014.
- [25] N. T. Nguyen, S. S. Ho, and C. L. N. Low, “A polymeric microgripper with integrated thermal actuators,” Journal of Micromechanics and Microengineering, Vol.14, pp. 969-974, 2004.
- [26] Ph. Lerch , C. Kara Slimane, B. Romanowicz, and Ph. Renaud, “Modelization and Characterization of Asymmetrical Thermal Micro-actuator,” J. Micromech. Microeng., 6, pp. 134-137, 1996.
- [27] S. Ballandras, S. Basrour, L. Robert, S. Megtert, P. Blind, M. Rouillay, P. Bernede, and W. Daniau, “Microgrippers fabricated by the LIGA technique,” Sensors and Actuators, A 58, pp. 265-272, 1997.
- [28] E. Eisinberg, A. Menciassi, S. Micera, D. Campolo, M. C. Carrozza, and P. Dario, “PI force control of microgripper for assembling biomedical microdevices,” IEE Proc.-Circuits Devices Syst., Vol.148, pp. 348-352, 2001.
- [29] M. Kohl, E. Just, W. Pfleging, and S. Miyazaki, “SMA microgripper with integrated antagonism,” Sens. Actuators, Vol.83, pp. 208-213, 2000.
- [30] Y. Bellouard, “Microgrippers technologies overview,” Proceedings of the Workshop on Manipulation at Micro and Nano Scales (WS4), IEEE International Conference on Robotics and Automation, Katholieke Universiteit, Leuven, Belgium, 16-21 May, 1998.
- [31] R. S. Fearing, “Survey of sticking effects for micro parts handling,” Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems, pp. 212-217, 1995.
- [32] G. Cubric and G. Nikolic, “Applying the vacuum gripper for knitted fabric transfer,” Melliand International, Vol.19, pp. 167-168, 2013.
- [33] W. H. Schaaf and K. H. Mäder, “Vacuum layer grippers: Applications, system concepts and key issues,” VDI Berichte, ed, p. 99, 2006.
- [34] T. Takahashi, K. Nagato, M. Suzuki, and S. Aoyagi, “Flexible vacuum gripper with autonomous switchable valves,” Proceedings – IEEE International Conference on Robotics and Automation, pp. 364-369, 2013.
- [35] S. E. Vargo, E. P. Muntz, G. R. Shiflett, and W. C. Tang, “The Knudsen Compressor as a Micro and Macroscale Vacuum Pump Without Moving,” J. Vac, SCi. Technol. A, 17, pp. 2308-2313, 1999.
- [36] W. Zesch, M. Brunner, and A. Weber, “Vacuum tool for handling microobjects with a nanorobot,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.2, pp. 1761-1766, 1997.
- [37] B. López-Walle, M. Gauthier, and N. Chaillet, “Dynamic modelling for a submerged freeze microgripper using thermal networks,” Journal of Micromechanics and Microengineering, Vol.20, 2010.
- [38] J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun., Vol.197, pp. 239-245, 2001.
- [39] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett., Vol.11, No.5, pp. 288-290, 1986.
- [40] P. A. Bancel, V. B. Cajipe, F. Rodier, and J. Witz, “Laser seeding for biomolecular crystallization,” J. Cryst. Growth, Vol.191, pp. 537-544, 1998.
- [41] C. L. Rambin and R. O. Warrington, “Micro-assembly with a focused laser beam,” IEEE MEMS, pp. 285-290, 1994.
- [42] J. Ponce, D. Stam, and B. Faverjon, “On Computing 2-Finger Force-Closure Grasps of Curved 2d Objects,” International Journal of Robotics Research, Vol.12, pp. 263-273, 1993.
- [43] R. Schroeder, F. W. Torres, C. Binder, A. N. Klein, and J. D. B. de Mello, “Failure mode in sliding wear of PEEK based composites,” Wear, Vol.301, pp. 717-726, 2013.
- [44] A. Avanzini, G. Donzella, D. Gallina, S. Pandini, and C. Petrogalli, “Fatigue behavior and cyclic damage of peek short fiber reinforced composites,” Composites Part B-Engineering, Vol.45, pp. 397-406, 2013.
- [45] A. Borboni and D. De Santis, “Large deflection of a non-linear, elastic, asymmetric Ludwick cantilever beam subjected to horizontal force, vertical force and bending torque at the free end,” Meccanica, Vol.49, pp. 1327-1336, 2014.
- [46] P. Gallo and F. Berto, “Some Considerations on the J-Integral under Elastic-Plastic Conditions for Materials Obeying a Ramberg-Osgood Law,” Physical Mesomechanics, Vol.18, pp. 298-306, 2015.
- [47] E. Gentili, E. F. Aggogeri, and F. M. Mazzola, “The effectiveness of the quality function deployment in managing manufacturing and transactional processes,” ASME International Mechanical Engineering Congress and Exposition, Proceedings, 3, pp. 237-246, 2008.
- [48] F. Chen, K. Sekiyama, B. Sun, P. Di, J. Huang, H. Sasaki, and T. Fukuda, “Design and Application of an Intelligent Robotic Gripper for Accurate and Tolerant Electronic Connector Mating,” Journal of Robotics andMechatronics, Vol.24, No.3, pp. 441-451, 2012.
- [49] M. N. Ribuan, S. Wakimoto, K. Suzumori, and T. Kanda, “Omnidirectional Soft Robot Platform with Flexible Actuators for Medical Assistive Device,” Int. J. of Automation Technology, Vol.10, No.4, pp. 494-502, 2016.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.