IJAT Vol.11 No.2 pp. 311-321
doi: 10.20965/ijat.2017.p0311


A Robot Gripper in Polymeric Material for Solid Micro-Meso Parts

Francesco Aggogeri, Andrea Avanzini, Alberto Borboni, and Stefano Pandini

Department of Mechanical and Industrial Engineering, University of Brescia
via Branze 38, 25123 Brescia, Italy

Corresponding author

October 1, 2016
November 16, 2016
March 1, 2017
robot gripper, kinematic analysis, polymeric material, micro-meso gripping
This paper proposes a robot gripper in polymeric material for solid micro-meso parts. The gripper is developed using a light-weight, highly deformable and low cost material, that allows elastic deformations. The proposed solution consists of a simple geometry, incorporating the complexity of the mechanical transmission in the non-linear high deformations of the flexible elements of the device. This choice permits to grip multi-sizes objects. The design approach focuses on Ludwick material model, that describes deformable materials with a nonlinear elastic behavior. The kinematics of the gripper is presented and the results are verified with the finite element analysis. Finally, the gripper was fabricated and validated through a set of experimetal tests. The obtained resulsts confirmed the theoretical and simultion models. The maximum opening and force of the gripping jaws are 1,500 μm and 155 mN, repsectively. Nevetheless further performances may be obtained using different geometrical choices developed in the kinematic analysis.
Cite this article as:
F. Aggogeri, A. Avanzini, A. Borboni, and S. Pandini, “A Robot Gripper in Polymeric Material for Solid Micro-Meso Parts,” Int. J. Automation Technol., Vol.11 No.2, pp. 311-321, 2017.
Data files:
  1. [1] R. Datta, S. Pradhan, and B. Bhattacharya, “Analysis and Design Optimization of a Robotic Gripper Using Multiobjective Genetic Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics:Ssystems, Vol.46, pp. 16-26, 2016.
  2. [2] J. Agnus, P. Nectoux, and N. Chaillet, “Overview of microgrippers and design of a micromanipulation station based on a MMOC microgripper,” Proc. IEEE Int. Symp. Computational Intelligence Robotics Automation, pp. 117-123, 2005.
  3. [3] W. S. N. Trimmer, “Microrobots and micromechanical systems,” Sens. Actuators, Vol.19, No.3, pp. 267-287, 1989.
  4. [4] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” Proceedings – IEEE International Conference on Robotics and Automation, pp. 348-353, 2000.
  5. [5] C. J. Kim, A. P. Pisano, R. S. Muller, and M. G. Lim, “Polysilicon microgripper,” Sensors and Actuators: A. Physical, Vol.33, pp. 221-227, 1992.
  6. [6] M. Kohl, B. Krevet, and E. Just, “SMA microgripper system,” Sensors and Actuators, A: Physical, Vol.97-98, pp. 646-652, 2002.
  7. [7] A. Nikoobin and M. Hassani Niaki, “Deriving and analyzing the effective parameters in microgrippers performance,” Scientia Iranica, Vol.19, pp. 1554-1563, 2012.
  8. [8] F. Beyeler, A. Neild, S. Oberti, D. J. Bell, Y. Sun, J. Dual, and B. J. Nelson, “Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field,” J. Microelectromech. Syst., Vol.7, No.15, 2007.
  9. [9] S. E. Istricteanu, “Studies and research on micro-grippers embedded in mechatronic systems used for micro-positioning,” Romanian Review Precision Mechanics, Optics and Mechatronics, pp. 169-174, 2013.
  10. [10] M. J. Madou, Fundamentals of Microfabrication, 2nd ed. Boca Raton, FL: CRC, 2002.
  11. [11] W. Wang, D. M. Lee, H. H. Lee, S. R. Lee, and S. H. Yang, “A compact mechanical gripper system for meso-scale parts using a ball-roller joint,” Advanced Materials Research, Vol.711, ed, pp. 477-481, 2013.
  12. [12] W. Ji, J. Li, J. Yang, S. Ding, and D. Zhao, “Analysis and validation for mechanical damage of apple by gripper in harvesting robot based on finite element method,” Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, Vol.31, pp. 17-22, 2015.
  13. [13] T. Matsunaga, G. Fau, R. Kozuki, T. Kazuki, and K. Ohnishi, “Gripper’s rotation of five DoF surgical robot by using coordinate transformation,” Proceedings - 2015 IEEE International Conference on Mechatronics, ICM 2015, pp. 52-57, 2015.
  14. [14] M. Vagaš and J. Varga, “Design of modular gripper for industrial robot,” Applied Mechanics and Materials, Vol.436, ed, pp. 351-357, 2013.
  15. [15] A. Bhattacharjee, B. Bepari, and S. Bhaumik, “Selection of robotic grippers under MCDM environment: An optimized trade Off technique,” Studies in Computational Intelligence, Vol.543, ed, pp. 141-158, 2014.
  16. [16] G. Fantoni, S. Capiferri, and J. Tilli, “Method for supporting the selection of robot grippers,” Procedia CIRP, pp. 330-335, 2014.
  17. [17] R. Kato and T. Arai, “Assessment of Mental Stress on Human Operators Induced by the Assembly Support in a Robot-Assisted “Cellular Manufacturing” Assembly System,” Int. J. of Automation Technology, Vol.3, No.5, pp. 569-579, 2009.
  18. [18] R. C. Luo, “Automatic Quick-Change Gripper Finger for Assembly Automation,” Proceedings of the International Conference on Assembly Automation, pp. 215-224, 1984.
  19. [19] J. Schmalz and G. Reinhart, “Automated selection and dimensioning of gripper systems,” Procedia CIRP, pp. 212-216, 2014.
  20. [20] G. Carbone, M. Ceccarelli, H. Kerle, and A. Raatz, “Design and Experimental Validation of a Microgripper,” Journal of Robotics and Mechatronics, Vol.13, No.3, pp. 319-325, 2001.
  21. [21] E. Murayama, Y. Yogosawa, Y. Kawakami, A. Horikawa, K. Shioda, and M. Ogawa, “Study on Control Performance with Consideration of Articulated Manipulators with Pneumatic Cylinders,” Int. J. of Automation Technology, Vol.8, No.2, pp. 159-168, 2014.
  22. [22] A. J. Sanchez-Salmeron, R. Lopez-Tarazon, R. Guzman-Diana, and C. Ricolfe-Viala, “Recent development in micro-handling systems for micro-manufacturing,” Journal of Materials Processing Technology, 167, pp. 499-507, 2005.
  23. [23] F. Aggogeri, A. Borboni, A. Merlo, N. Pellegrini, and R. Ricatto, “Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control,” Sensor, Vol.16, No.10, 1577, 2016.
  24. [24] J. Y. Wang and C. C. Lan, “A constant-force compliant gripper for handling objects of various sizes,” Journal of Mechanical Design, Transactions of the ASME, Vol.136, 2014.
  25. [25] N. T. Nguyen, S. S. Ho, and C. L. N. Low, “A polymeric microgripper with integrated thermal actuators,” Journal of Micromechanics and Microengineering, Vol.14, pp. 969-974, 2004.
  26. [26] Ph. Lerch , C. Kara Slimane, B. Romanowicz, and Ph. Renaud, “Modelization and Characterization of Asymmetrical Thermal Micro-actuator,” J. Micromech. Microeng., 6, pp. 134-137, 1996.
  27. [27] S. Ballandras, S. Basrour, L. Robert, S. Megtert, P. Blind, M. Rouillay, P. Bernede, and W. Daniau, “Microgrippers fabricated by the LIGA technique,” Sensors and Actuators, A 58, pp. 265-272, 1997.
  28. [28] E. Eisinberg, A. Menciassi, S. Micera, D. Campolo, M. C. Carrozza, and P. Dario, “PI force control of microgripper for assembling biomedical microdevices,” IEE Proc.-Circuits Devices Syst., Vol.148, pp. 348-352, 2001.
  29. [29] M. Kohl, E. Just, W. Pfleging, and S. Miyazaki, “SMA microgripper with integrated antagonism,” Sens. Actuators, Vol.83, pp. 208-213, 2000.
  30. [30] Y. Bellouard, “Microgrippers technologies overview,” Proceedings of the Workshop on Manipulation at Micro and Nano Scales (WS4), IEEE International Conference on Robotics and Automation, Katholieke Universiteit, Leuven, Belgium, 16-21 May, 1998.
  31. [31] R. S. Fearing, “Survey of sticking effects for micro parts handling,” Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems, pp. 212-217, 1995.
  32. [32] G. Cubric and G. Nikolic, “Applying the vacuum gripper for knitted fabric transfer,” Melliand International, Vol.19, pp. 167-168, 2013.
  33. [33] W. H. Schaaf and K. H. Mäder, “Vacuum layer grippers: Applications, system concepts and key issues,” VDI Berichte, ed, p. 99, 2006.
  34. [34] T. Takahashi, K. Nagato, M. Suzuki, and S. Aoyagi, “Flexible vacuum gripper with autonomous switchable valves,” Proceedings – IEEE International Conference on Robotics and Automation, pp. 364-369, 2013.
  35. [35] S. E. Vargo, E. P. Muntz, G. R. Shiflett, and W. C. Tang, “The Knudsen Compressor as a Micro and Macroscale Vacuum Pump Without Moving,” J. Vac, SCi. Technol. A, 17, pp. 2308-2313, 1999.
  36. [36] W. Zesch, M. Brunner, and A. Weber, “Vacuum tool for handling microobjects with a nanorobot,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.2, pp. 1761-1766, 1997.
  37. [37] B. López-Walle, M. Gauthier, and N. Chaillet, “Dynamic modelling for a submerged freeze microgripper using thermal networks,” Journal of Micromechanics and Microengineering, Vol.20, 2010.
  38. [38] J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun., Vol.197, pp. 239-245, 2001.
  39. [39] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett., Vol.11, No.5, pp. 288-290, 1986.
  40. [40] P. A. Bancel, V. B. Cajipe, F. Rodier, and J. Witz, “Laser seeding for biomolecular crystallization,” J. Cryst. Growth, Vol.191, pp. 537-544, 1998.
  41. [41] C. L. Rambin and R. O. Warrington, “Micro-assembly with a focused laser beam,” IEEE MEMS, pp. 285-290, 1994.
  42. [42] J. Ponce, D. Stam, and B. Faverjon, “On Computing 2-Finger Force-Closure Grasps of Curved 2d Objects,” International Journal of Robotics Research, Vol.12, pp. 263-273, 1993.
  43. [43] R. Schroeder, F. W. Torres, C. Binder, A. N. Klein, and J. D. B. de Mello, “Failure mode in sliding wear of PEEK based composites,” Wear, Vol.301, pp. 717-726, 2013.
  44. [44] A. Avanzini, G. Donzella, D. Gallina, S. Pandini, and C. Petrogalli, “Fatigue behavior and cyclic damage of peek short fiber reinforced composites,” Composites Part B-Engineering, Vol.45, pp. 397-406, 2013.
  45. [45] A. Borboni and D. De Santis, “Large deflection of a non-linear, elastic, asymmetric Ludwick cantilever beam subjected to horizontal force, vertical force and bending torque at the free end,” Meccanica, Vol.49, pp. 1327-1336, 2014.
  46. [46] P. Gallo and F. Berto, “Some Considerations on the J-Integral under Elastic-Plastic Conditions for Materials Obeying a Ramberg-Osgood Law,” Physical Mesomechanics, Vol.18, pp. 298-306, 2015.
  47. [47] E. Gentili, E. F. Aggogeri, and F. M. Mazzola, “The effectiveness of the quality function deployment in managing manufacturing and transactional processes,” ASME International Mechanical Engineering Congress and Exposition, Proceedings, 3, pp. 237-246, 2008.
  48. [48] F. Chen, K. Sekiyama, B. Sun, P. Di, J. Huang, H. Sasaki, and T. Fukuda, “Design and Application of an Intelligent Robotic Gripper for Accurate and Tolerant Electronic Connector Mating,” Journal of Robotics andMechatronics, Vol.24, No.3, pp. 441-451, 2012.
  49. [49] M. N. Ribuan, S. Wakimoto, K. Suzumori, and T. Kanda, “Omnidirectional Soft Robot Platform with Flexible Actuators for Medical Assistive Device,” Int. J. of Automation Technology, Vol.10, No.4, pp. 494-502, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024