Paper:
Increasing the Performance of Processing Machines by Executing Output Rate Dependent Motion Profiles
Olaf Holowenko†, Bernd Kauschinger, and Steffen Ihlenfeldt
Institute of Machine Tools and Control Engineering (IWM), Technische Universität Dresden
Helmholtzstr. 7a, 01062 Dresden, Germany
†Corresponding author
- [1] Theegarten Pactec GmbH & Co. KG, 2016.
http://www.theegarten-pactec.com/home [AccessedAugust 1, 2016] - [2] K. Wegener, S. Weikert, and J. Mayr, “Age of Compensation – Challenge and Chance for Machine Tool Industry,” Int. J. of Automation Technology, Vol.10, pp. 609-623, 2016.
- [3] M. Weck and C. Brecher, “Werkzeugmaschinen 3,” Berlin, Heidelberg: Springer, 2006.
- [4] M. Döring, S. Tietze, and J.-P. Majschak, “Methodenvergleich zum Bewegungsdesign in schnelllaufenden Verarbeitungsmaschinen am Beispiel eines Siegelbackenantriebes mit elastischer Antriebsanbindung,” Tagungsband der 16. VDI-Getriebetagung Bewegungs-technik, VDI-Berichte 2175, pp. 115-131, 2012.
- [5] M. Döring and J.-P. Majschak, “Berechnung von Bewegungsvorgaben unter Beachtung der Prozessdynamik am Beispiel des schnelllaufenden Transports von kleinformatigen Stückgütern,” Tagungsband des 10. Kolloquium Getriebetechnik 2013, Ilmenau, pp. 187-200, 2013.
- [6] K. Großmann, B. Kauschinger, and O. Holowenko, “Efficient Execution of Highly Dynamic Trajectory Values in Processing Machines,” Tagungsband sps ipc drives, pp. 205-214, Berlin, Offenbach: VDE Verlag, 2012.
- [7] O. Holowenko, B. Kauschinger, and K. Großmann, “Effiziente Abarbeitung hoch dynamischer Bewegungen – Teil 1,” ZWF, Vol.108, No.7-8, pp. 498-503, 2013.
- [8] O. Holowenko, B. Kauschinger, and K. Großmann, “Effiziente Abarbeitung hoch dynamischer Bewegungen – Teil 2,” ZWF, Vol.108, No.9, pp. 664-669, 2013.
- [9] F. H. McMahon, “The Livermore FORTRAN Kernels Test of the Numerical Performance Range,” J. L. Martin (Ed.), Performance Evaluation of Supercomputers, pp. 143-186, Amsterdam: Elsevier Science, 1988.
- [10] L. Piegl and W. Tiller, “The NURBS book,” Berlin, Heidelberg: Springer, 1995.
- [11] J. Hoschek and D. Lasser, “Grundlagen der geometrischen Datenverarbeitung,” Stuttgart: Teubner, 1992.
- [12] T. Pang, “An introduction to computational physics,” Cambridge: Cambridge Univ. Press, 2006.
- [13] H. Späth, “Eindimensionale Spline-Interpolations-Algorithmen,” München, Wien: Oldenbourg, 1990.
- [14] W. G. Horner, “A new method of solving numerical equations of all orders, by continuous approximation,” Philosophical Trans. of the Royal Society of London, Vol.109, pp. 308-335, 1819.
- [15] A. E. Vries-Baayens, “CAD product data exchange: conversions from curves and surfaces,” Ph.D. thesis, Delft University of Technology, Indusrial Design Engineering, 1991.
- [16] I. Juhász and M. Hoffmann, “Constrained shape modification of cubic B-spline curves by means of knots,” Computer-Aided Design, Vol.36, No.5, pp. 437-445, April 2004.
- [17] L. Piegl and W. Tiller, “Least-Squares B-Spline Curve Approximation with Arbitrary End Derivatives,” Engineering with Computers, Vol.16, pp. 109-116, September 2000.
- [18] C. Deng and H. Lin, “Progressive and iterative approximation for least squares B-spline curve and surface fitting,” Computer-Aided Design, Vol.47, pp. 32-44, February 2014.
- [19] D. S. Meek and D. J. Walton, “Blending two parametric curves,” Computer-Aided Design, Vol.41, pp. 423-431, June 2009.
- [20] M. Szilvási-Nagy and T. P. Vendel, “Generating curves and swept surfaces by blended circles,” Computer Aided Geometric Design, Vol.17, pp. 197-206, February 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.