IJAT Vol.11 No.1 pp. 74-80
doi: 10.20965/ijat.2017.p0074

Technical Paper:

Development of Warm-Press-Forming Method of CFRTP Motor Vehicle Floors with Complicated Shapes

Masashi Kurose*1,†, Hitoshi Nakamura*2, Masato Nishi*3, Tei Hirashima*3, Norihide Abe*4, and Tetsushi Kaburagi*5

*1National Institute of Technology, Gunma College
580 Toriba, Maebashi, Gunma, Japan

Correpsonding author,

*2Asano Co., Ltd., Gunma, Japan

*3JSOL Corporation, Tokyo, Japan

*4Tokyo Institute of Technology, Kanagawa, Japan

*5Gunma Industrial Technology Center, Gunma, Japan

April 18, 2016
September 9, 2016
January 5, 2017
CFRTP, die and mold, warm-press-forming, forming simulation

In this paper, some large automotive parts with complex shapes are produced to report the results of our efforts to develop press molding technologies for thermoplastic carbon fiber-reinforced plastic (CFRTP). Members of industry, academia, and the government collaborated to realize this project. The project includes a molding experiment, CAE analysis, and material strength measurements. In the material test, a tensile test, bending test, heat distortion test, and torsion test are carried out to produce several stress-strain curves. Applying the new analytical model in the simulation shows that accuracy is improved. As a result, by measuring the temperature change during the forming of complex shapes, a large automotive part with a complex shape was successfully molded in a short time. Other productivity improvements are also reported on.

Cite this article as:
M. Kurose, H. Nakamura, M. Nishi, T. Hirashima, N. Abe, and T. Kaburagi, “Development of Warm-Press-Forming Method of CFRTP Motor Vehicle Floors with Complicated Shapes,” Int. J. Automation Technol., Vol.11, No.1, pp. 74-80, 2017.
Data files:
  1. [1] T. Ohashi, T. Ando, and N. Nakaoka, “In-Process Measurement of Elastic Deformation of a Large Deep-Drawing-Die with Fusion of Experiment and Numerical Analysis,” Int. J. of Automation Technology, Vol.3, No.4, pp. 457-464, 2009.
  2. [2] K. Kishida, T. Nakamura, H. Aoyama, N. Matsushita, and A. Ushimaru, “Basic Study on Laser Forming of Curved Surfaces with Simulation,” Int. J. of Automation Technology, Vol.7, No.1, pp. 24-29, 2013.
  3. [3] J. O. Hallquist, LS-DYNA Theory Manual, ISBN 0-9778540-0-0, 2006.
  4. [4] Molex3D, available: [accessed April 16, 2016]
  5. [5] Y. Maeda and Y. Otsuka, “High-Performance Simulation of Mold Filling Using Porous Media Method,” Int. J. of Automation Technology, Vol.2, No.4, pp. 247-252, 2008.
  6. [6] T. Kaburagi, M. Kurose, T. Ogawa, H. Kuroiwa, and T. Iwasawa, “Investigation of Flow and Sink Initiation Process in Mold Shapes in Injection Molding,” Int. J. of Automation Technology, Vol.9, No.1, pp. 10-18, 2015.
  7. [7] H. Tanaka, N. Asakawa, and M. Hirao, “Forming Type Rapid Prototyping Development – Error Compensation with Shape Measurement,” Int. J. of Automation Technology, Vol.2, No.6, pp. 462-467, 2008.
  8. [8] L. Ulich and P. Fairley, “Carbon car [2013 Tech To Watch],” IEEE Spect., Vol.50, pp. 30-31, 2013.
  9. [9] A. C. Long, “Composite forming technologies,” CRC Press, Woodhead Pub., Cambridge, UK, pp. 256-276, 2007.
  10. [10] Y. Nakasone, “Theory of Elasticity of Anisotropic Materials,” Corona Publishing Co., ltd, 2014.
  11. [11] K. Akai, Y. Kageyama, K. Sato, N. Nishino, and K. Kageyama, “AHP Analysis of the Preference of Engineers for Suitable CFRP for Automobile Parts,” Int. J. of Automation Technology,” Vol.9, No.3, pp. 222-234, 2015.
  12. [12] Digimat, available: [accessed April 16, 2016]
  13. [13] S. B. Sharma and M. P. F. Sutcliffe, “A simplified finite element model for draping of woven material,” Compos. Part A: Appl. Sci. Manuf., Vol.35, pp. 637-643, 2004.
  14. [14] M. Nishi and T. Hirashima, “Approach for dry textile composite forming simulation,” in Proc.19th Int. Conf. Compos. Mat., Canada, 2013.
  15. [15] M. Nishi, T. Hirashima, and T. Kurashiki, “Textile composite reinforcement forming analysis considering out-of-plane bending stiffness and tension dependent in-plane shear behavior,” in Proc. 16th Eur. Conf. Compos. Mat., Spain, 2014.
  16. [16] P. Boisse, B. Zouari, and J. L. Daniel, “Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming,” Compos. Part A: Appl. Sci. Manuf., Vol.37, pp. 2201-2212, 2006.
  17. [17] Y. Aimene, B. Hagege, F. Sidoroff, E. Vidal-Salle, P. Boisse, and S. Dridi, “Hyperelastic approach for composite reinforcement forming simulations,” Int. J. Mater. Form.,Vol.1, pp. 811-814, 2011.
  18. [18] P. Wang, N. Hamila, and P. Boisse, “Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix,” Compos. Part B: Eng., Vol.52, pp. 127-136, 2013.
  19. [19] J. Launay, G. Hivet, A.V. Duong, and P. Boisse, “Experimental analysis of the influence of tensions on in plane shear behavior of woven composite reinforcements,” Compos. Sci. Technol., Vol.68, pp. 506-515, 2008.
  20. [20] P. Harrison, M. J. Clifford, A.C. Long, and C.D. Rudd, “A constituent-based predictive approach to modelling the rheology of viscous textile composites,” Compos. Part A: Appl. Sci. Manuf., Vol.35, pp. 915-931, 2004.
  21. [21] S. Hineno, T. Yoneyama, D. Tatsuno, M. Kimura, K. Shiozaki, T. Moriyasu, M. Okamoto, and S. Nagashima, “Fiber Deformation Behavior during Press Forming of Rectangle Cup by Using Plane Weave Carbon Fiber Reinforced Thermoplastic Sheet,” Procedia Engineering, Vol.81, pp. 1614-1619, 2014.
  22. [22] P. de Luca, P. Lefébure, and A. K. Pickett, “Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX,” Composites Part A: Applied Science and Manufacturing, Vol.29, Issues 1–2, pp. 101-110, 1998.
  23. [23] Q. Chen, P. Boisse, C. H. Park, A. Saouab, and J. Bréard, “Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes,” Composite Structures, Vol.93, Issue 7, pp. 1692-1703, 2011.
  24. [24] S. Isogawa, H. Aoki, and M. Tejima, “Isothermal Forming of CFRTP Sheet by Penetration of Hemispherical Punch,” Procedia Engineering, Vol.81, pp. 1620-1626, 2014.
  25. [25] P. Wang, N. Hamila, and P. Boisse, “Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix,” Composites Part B: Engineering, Vol.52, pp. 127-136, Sep. 2013.
  26. [26] I. Ivanov and A. Tabiei, “Loosely woven fabric model with viscoelastic crimped fibres for ballistic impact simulations,” Int. J. Numer. Methods Eng., Vol.61, pp. 1565-1583, 2004.
  27. [27] M. Nishi, T. Kaburagi, M. Kurose, T. Hirashima, and T. Kurasiki, “Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite,” World Academy of Science, Engineering and Technology Int. J. of Chemical, Nuclear, Metallurgical and Materials Engineering, Vol.8, No.8, pp. 671-679, 2014.
  28. [28] Asano Co., Ltd., [accessed April 16, 2016]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 11, 2018