Paper:
Automated Design of Image Recognition Process for Picking System
Taiki Ogata*1,*2,†, Kazuaki Tsujimoto*1, Taigo Yukisawa*1, Yanjiang Huang*3, Tamio Arai*4, Tsuyoshi Ueyama*5, Toshiyuki Takada*5, and Jun Ota*1
*1Research into Artifacts, Center for Engineering (RACE), The University of Tokyo
5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
†Corresponding author
*2Interdisciplinary Graduate School of Science & Engineering, Tokyo Institute of Technology, Kanagawa, Japan
*3School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, P.R. China
*4The Center for Promotion of Educational Innovation, Shibaura Institute of Technology, Tokyo, Japan
*5DENSO WAVE INCORPORATED, Aichi, Japan
- [1] T. S. Newman and A. K. Jai, “A survey of automated visual inspection,” Computer Vision and Image Understanding, Vol.61, pp. 231–262, 1995.
- [2] H. Golnabi and A. Asadpour, “Design and application of industrial machine vision systems,” Robotics and Computer-integrated Manufacturing, Vol.23, pp. 630–637, 2007.
- [3] M. Peña-Cabrera, V. Lomas-Barrie, I. López-Juárez, and R. Osorio-Comparán, “Contour object generation method for object recognition using FPGA,” International Journal of Automation Technology, Vol.7, pp. 182–189, 2013.
- [4] P. M. Roth and M. Winter, “Survey of Appearance-based methods for object recognition,” Technical Report, Institute for computer graphics & vision, Graz University of Technology, Vol.15, 2008.
- [5] E. N. Malamas, E. G. M. Petrakis, M. Zervakis, L. Petit, and J.-D. Legat, “A survey on industrial vision systems, applications and tools,” Image and vision computing, Vol.21, pp. 171–188, 2003.
- [6] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” Journal of Electronic imaging, Vol.13, pp. 146–165, 2004.
- [7] P. Soille, Morphological Image Analysis: Principles and Applications. Berlin, Heidelberg: Springer-Verlag, 2003.
- [8] A. Buades, B. Coll, and J-M Morel, “A review of image denoising algorithms, with a new one,” Multiscale Modeling & Simulation, Vol.4, pp. 490–530, 2005.
- [9] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern Recognition, Vol.26, pp. 1277–1294, 1993.
- [10] Ø. D. Trier, A. K. Jain, and T. Taxt, “Feature extraction methods for character recognition-a survey,” Pattern Recognition, Vol.29, pp. 641–662, 1996.
- [11] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors: a survey,” Foundations and Trends in Computer Graphics and Vision, Vol.3, pp. 177-280, 2008.
- [12] D. G. Lowe, “Object recognition from local scale-invariant features,” Proceedings of the 7th international conference on IEEE Computer vision, Vol.2, pp. 1150-1157, Sep. 1999.
- [13] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, Vol.60, pp. 91-110, 2004.
- [14] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust features (SURF),” Computer Vision and Image Understanding, Vol.110, pp. 346–359, 2008.
- [15] C. Tomasi and T. Kaneda, “Detection and tracking of point features,” Carnegie Mellon University Technical Report, CMU-CS-91-132, 1991.
- [16] H. Kim, J. Y. Lee, J. H. Kim, J. B. Kim, and W. Y. Han, “Objective recognition and pose estimation using KLT,” Proceedings of 2012 12th International Conference on Control, Automation and Systems (ICCAS), pp. 214–217, 2012.
- [17] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: A review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, pp 4–37, 2000.
- [18] R. C. Vogt, Automatic Generation of Morphological Set Recognition Algorithm. New York: Springer-Verlag, 1989.
- [19] H. I. Shafeek, E. S. Gadelmawla, A. A. Abdel-Shafy, and I. M. Elewa, “Automatic inspection of gas pipeline welding defects using and expert vision system,” NDT&E International, Vol.37, pp. 301–307, 2004.
- [20] M. I. Quintana, R. Polli, and E. Claridge, “Morphological algorithm design for binary image using genetic programming,” Genetic Programming And Evolvable Machines, Vol.7, pp. 81–102, 2006.
- [21] T. Nagao and S. Masunaga, “Automatic construction of image transformation processes using genetic algorithm,” IEEE International Conference on Image Processing, Vol.3, pp. 731–734, 1996.
- [22] H. Bai, N. Yata, and T. Nagao, “Automatic finding of optimal image processing for extracting concrete image cracks using features ACTIT,” IEEJ Transactions on Electrical and Electronic Engineering, Vol.7, pp. 308-315, 2012.
- [23] K. Lillywhite, B. Tippetts, and D. Lee, “Self-tuned evolution-Constructed features for general object recognition,” Pattern Recognition, Vol.45, pp. 241–251, 2012.
- [24] K. Lillywhite, D. Lee, B. Tippetts, and J. Archibald, “A feature construction method for general object recognition,” Pattern Recognition, Vol.46, pp. 3300–3314, 2013.
- [25] S. S. Bucak, R. Jin, and A. K. Jain, “Multiple kernel learning for visual object recognition: a review,” IEEE transactions on pattern analysis and machine intelligence, Vol.36, pp. 1354–1369, 2014.
- [26] http://www.orin.jp/?page_id=73 [accessed Oct. 8, 2015]
- [27] M. Ambai and Y. Yoshica, “Card: compact and real-time descriptors,” Proceedings of 2011 IEEE International Conference on Computer Vision (ICCV), pp. 97-104, Nov. 2011.
- [28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and Ian H. Witten, “The WEKA data mining software: an update,” ACM SIGKDD Explorations Newsletter, Vol.11, pp. 10–18, 2009.
- [29] J. R. Quinlan, “C4.5: Programs for Machine Learning,” San Mateo, CA: Morgan Kaufmann Publishers, 1993.
- [30] T. Ogata, T. Okubo, H. Nagai, M. Yamamoto, M. Sugi, and J. Ota, “A novel algorithm for continuous steel casting scheduling with focus on quality property constraint and slab width maximization,” International Journal of Automation Technology, Vol.9, pp. 235–247, 2015.
- [31] J. Y. Chai, T. Sakaguchi, and K. Shirase, “Dynamic controls of genetic algorithm scheduling in supply chain,” International Journal of Automation Technology, Vol.4, pp. 169–177, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.