IJAT Vol.10 No.5 pp. 708-716
doi: 10.20965/ijat.2016.p0708


Vision-Based Execution Monitoring of State Transition in Disassembly Automation

Supachai Vongbunyong*,†, Maurice Pagnucco**, and Sami Kara**

*Institute of Field Robotics, King Mongkut’s University of Technology Thonburi
126 Pracha u-tid Road, Bangmod Thungkru, Bangkok, Thailand

Corresponding author

**The University of New South Wales, Sydney, Australia

April 4, 2016
August 19, 2016
September 5, 2016
cognitive robotics, execution monitoring, disassembly automation, vision system, RGB-D

Disassembly is one of the key steps for effective treatment of end-of-life products. However, manual disassembly is usually not feasible in industrial practice for reasons of economic infeasibility. Disassembly automation with cognitive ability has been introduced in order to resolve this problem. Execution monitoring is one of the primary functions making the system aware of the current condition and the consequences of execution. A vision system with RGB-D space is used for sensing the conditions of the product in this study.

Cite this article as:
S. Vongbunyong, M. Pagnucco, and S. Kara, “Vision-Based Execution Monitoring of State Transition in Disassembly Automation,” Int. J. Automation Technol., Vol.10, No.5, pp. 708-716, 2016.
Data files:
  1. [1] H. Komoto, S. Kondoh, and K. Masui, “Simulating the formation of urban minesconsidering the rational decisions of distributed end-of-life stakeholders,” Int. J. Automation Tech., Vol.8, No.5, pp. 653-663, 2014.
  2. [2] E. Kunii, T. Matsuura, S. Fukushige, and Y. Umeda, “Proposal of consistency management method between product and its life cycle for supporting life cycle design,” Int. J. Automation Tech., Vol.6, No.3, pp. 272-278, 2012.
  3. [3] S. Fukushige, Y. Inoue, K. Tonoike, and Y. Umeda, “Design methodology for modularity based on life cycle scenario,” Int. J. Automation Tech., Vol.3, No.1, pp. 40-48, 2009.
  4. [4] U. Büker, S. Drüe, N. Götze, G. Hartmann, B. Kalkreuter, R. Stemmer, et al., “Vision-based control of an autonomous disassembly station,” Robot Auton Syst., Vol.35, No.3-4, pp. 179-189, 2001.
  5. [5] M. Tonko and H.-H. Nagel, “Model-based stereo-tracking of non-polyhedral objects for automatic disassembly experiments,” Int. J. Comput Vis., Vol.37, No.1, pp. 99-118, 2000.
  6. [6] U. Büker, S. Drüe, N. Götze, G. Hartmann, B. Kalkreuter, R. Stemmer, et al., “Active object recognition system for disassembly tasks,” IEEE Symposium on Emerging Technologies and Factory Automation, ETFA., Vol.1, pp. 79-88, 1999.
  7. [7] M. Merda, W. Lepuschitz, T. Meurer, and M. Vincze (Eds.), “Towards ontology-based automated disassembly systems,” Industrial Electronics Conference (IECON), 2010.
  8. [8] A. J. D. Lambert and M. Gupta, “Disassembly modeling for assembly, maintenance, reuse, and recycling,” Boca Raton, Fla., CRC Press, 2005.
  9. [9] K. Wegener, W. H. Chen, F. Dietrich, K. Dröder, and S. Kara, “Robot assisted disassembly for the recycling of electric vehicle batteries,” Procedia CIRP, Vol.29, pp. 716-721, 2015.
  10. [10] B. Van and M. Kuren, “Automated demanufacturing studies in detecting and destroying threaded connections for processing electronic waste,” IEEE Int. Symposium on Electronics and the Environment, pp. 295-298, 2002.
  11. [11] K. Hohm, H. M. Hofstede, and H. Tolle, “Robot assisted disassembly of electronic devices,” IEEE Int. Conf. on Intelligent Robots and Systems, pp. 1273-1278, 2000.
  12. [12] B. Karlsson and J.-O. Järrhed, “Recycling of electrical motors by automatic disassembly,” Meas Sci Technol., Vol.11, No.4, pp. 350-357, 2000.
  13. [13] P. Kopacek and B. Kopacek, “Intelligent, flexible disassembly,” Int. J. Adv Manuf Technol., Vol.30, Nos.5-6, pp. 554-560, 2006.
  14. [14] S. R. Cruz-Ramirez, Y. Mae, T. Takubo, and T. Arai, “Detection of screws on metal-ceiling structures for dismantling tasks in buildings,” 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 4123-4129, 2008.
  15. [15] P. Gil, J. Pomares, S. V. T. Puente, C. Diaz, F. Candelas, and F. Torres, “Flexible multi-sensorial system for automatic disassembly using cooperative robots,” Int. J. Comput Integr Manuf., Vol.20, No.8, pp. 757-772, 2007.
  16. [16] S. Vongbunyong, S. Kara, and M. Pagnucco, “Basic behaviour control of the vision-based cognitive robotic disassembly automation,” Assem Autom., Vol.33, No.1, pp. 38-56, 2013.
  17. [17] W. H. Chen (Ed.), “Line detection by centre and width estimation,” The Int. Conf. on Artificial Intelligence and Pattern Recognition (AIPR2014), Asia Pacific University of Technology & Innovation (APU), Kuala Lumpur, Malaysia, 2014.
  18. [18] F. Torres, P. Gil, S. T. Puente, J. Pomares, and R. Aracil, “Automatic PC disassembly for component recovery,” Int. J. Adv Manuf Technol., Vol.23, Nos.1-2, pp. 39-46, 2004.
  19. [19] T. M. Jorgensen, A. W. Andersen, and S. S. Christensen (Eds.), “Shape recognition system for automatic disassembly of TV-sets,” IEEE Int. Conf. on Image Proc., 1996.
  20. [20] S. Vongbunyong, S. Kara, and M. Pagnucco, “Application of cognitive robotics in disassembly of products,” CIRP Ann – Manuf Technol., Vol.62, No.1, pp. 31-34, 2013.
  21. [21] J. R. Duflou, G. Seliger, S. Kara, Y. Umeda, A. Ometto, and B. Willems, “Efficiency and feasibility of product disassembly: A case-based study,” CIRP Ann – Manuf Technol., Vol.57, No.2, pp. 583-600, 2008.
  22. [22] S. Vongbunyong, S. Kara, and M. Pagnucco, “A framework for using cognitive robotics in disassembly of products,” Leveraging Technology for a Sustainable World – Proc. of the 19th CIRP Conf. on Life Cycle Engineering, pp. 173-178, 2012.
  23. [23] R. Y. Tang, Z. M. Zeng, C. K. Sun, and P. Wang, “3-step-calibration of 3D vision measurement system based-on structured light,” Int. J. Autom Tech., Vol.8, No.3, pp. 484-489, 2014.
  24. [24] M. Tanaka, H. Matsubara, and T. Morie, “Human detection and face recognition using 3d structure of head and face surfaces detected by rgb-d sensor,” J. Robotic Mech., Vol.27, No.6, pp. 691-697, 2015.
  25. [25] Microsoft Corporation, XBox 360 – Kinect 2011, Available from: [accessed December 1, 2011]
  26. [26] OpenKinect, libfreenect 2010, Available from: [accessed December 1, 2011]
  27. [27] G. Bradski and A. Kaebler, “Learning OpenCV – Computer Vision with the OpenCV Library,” Affine transform, 1st ed, O’ Reilly Media, Inc., pp. 164-169, 2008.
  28. [28] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, “Vision Sensors. Robotics: modelling, planning and control,” Springer, London, pp. 255-330, 2009.
  29. [29] OpenKinect, Imaging Information 2011. Available from: [accessed December 1, 2011]
  30. [30] OpenCV, OpenCV v2.1 documentation, Histogram 2010, March 10, 2011, Available from: [accessed March 10, 2011]

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 11, 2018