single-au.php

IJAT Vol.10 No.3 pp. 300-309
doi: 10.20965/ijat.2016.p0300
(2016)

Review:

Characteristics of Carbon-Fiber-Reinforced Plastics (CFRP) and Associated Challenges – Focusing on Carbon-Fiber-Reinforced Thermosetting Resins (CFRTS) for Aircraft

Akihiko Kitano

Automotive and Aircraft Center, Toray Industries, Inc.
9-1 Oe-cho, Minato-ku, Nagoya 455-8502, Japan

Corresponding author, E-mail: Akihiko_Kitano@nts.toray.co.jp

Received:
October 7, 2015
Accepted:
April 1, 2016
Published:
May 2, 2016
Keywords:
carbon-fiber-reinforced plastic (CFRP), carbon-fiber-reinforced thermosetting resins (CFRTS), tailor-made, aircraft, molding
Abstract

The characteristics of carbon-fiber-reinforced plastics (CFRP), which are being widely utilized in the aircraft industry as well as other fields, are reviewed, and challenges associated with their increasing application are discussed. The greatest feature of CFRP is that they can be tailor-made by arranging only the necessary amount of carbon fibers in the required directions. The material possesses unique characteristics, including heterogeneity, anisotropy, and a laminated structure, which must be taken into account in each stage of the design and manufacturing processes, including component design, molding, and machining. In particular, the machining stage requires a deeper understanding of the mechanisms involved, and it is hoped that further research and development will take place in this area.

Cite this article as:
A. Kitano, “Characteristics of Carbon-Fiber-Reinforced Plastics (CFRP) and Associated Challenges – Focusing on Carbon-Fiber-Reinforced Thermosetting Resins (CFRTS) for Aircraft,” Int. J. Automation Technol., Vol.10, No.3, pp. 300-309, 2016.
Data files:
References
  1. [1] A. Shindo, “Polyacrylonitrile (PAN)-based Carbon Fibers,” Comprehensive Composite Materials, Vol.1, pp. 1-33, ISBN 978-0-08-042993-9, 2000.
  2. [2] J. Matsui, “Stories of Carbon Fiber – Industrialization of Carbon Fiber,” Journal of the Japan Reinforced Plastic Society, Vol.44, No.1, pp. 29-33, 1988.
  3. [3] T. Hayashi, “Fukugo-Zairyo-Kogaku,” Nikkagiren, ISBN 9784817190086, 1971.
  4. [4] “Engineering Handbook Volume 1 “COMPOSITES”,” ASM International, ISBN 0-87170-279-7, 1987.
  5. [5] D. Hull, “An introduction to composite materials. Cambridge,” Cambridge University Press, 1981.
  6. [6] B. W. Rosen, “Tensile Failure of Fibrous Composites,” AIAA Journal, Vol.2, No.11, pp. 1985-1991, 1964.
  7. [7] C. Zweben and B. Roesn, “A Statistical Theory of Material Strength with Application to Composite Materials,” J. Mech. Phys. Solids, Vol.18, pp. 189-206, 1970.
  8. [8] T. Okabe, N. Takeda, Y. Kamoshida, M. Shimizu, and W. A. Curtin, “A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites,” Composites Science and Technology, Vol.61, pp. 1773-1787, 2001.
  9. [9] B. W. Rosen, “Fiber Composite Materials,” ASM, Chapter3, 1965.
  10. [10] H. T. Hahn and J. G. Williams, “Compression Failure Mechanisms in. Unidirectional Composites,” NASA TM85834, 1984.
  11. [11] T. Norita, A. Kitano, and K. Noguchi, “Compressive Strength of Fiber Reinforced Composite Materials – Effect of Fiber Properties –,” 4th US-Japan Conference on Composite Materials, pp. 548-557, 1988.
  12. [12] N. Odagiri, T. Muraki, and K. Tobukuro, “Toughness Improved High Performance TORAYCA Prepreg T800H/3900 Series,” 33rd International SAMPE Symposium, pp. 272-283, 1988.
  13. [13] N. Odagiri, H. Kishi, and T. Nakae, ACS 6th Technical Conference, pp. 43-52, 1991.
  14. [14] K. Kageyama, I. Kimpara, I. Ohsawa, M. Hojo, and S. Kabashima, “Mode I and Mode II Delamination Growth of Interlayer Toughened Carbon/Epoxy (T800H/3900-2) Composite System,” ASTM STP 1230, pp. 19-37, 1995.
  15. [15] M. Hojo, S. Matsuda, M. Tanaka, S. Ochiai, and A. Murakami, “Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates,” Composites Science and Technology, Vol.66, pp. 665-675, 2006.
  16. [16] L. Nicolai (Ed.), “The Role of the Polymeric Matrix on the Processing and Properties of Composite Materials,” Plenum Press, 1983.
  17. [17] J. C. Halpin, J. L. Kardos, and M. P. Dudukovic, “Processing Science: An Approach for Prepreg Composite System,” Pure & Applied Chemistry, Vol.55, No.5, pp. 893-906, 1983.
  18. [18] R. M. Jones, “Mecganics of Composite Materials,” McGRAW-HILL BOOK COMPANY, ISBN-0-07-032790-4, 1975.
  19. [19] J. M. Whitney, “Structural Analysis of Laminated Anistropic Plates,” TECHNOMIC publishing co, ISBN 87762-518-2, 1987.
  20. [20] J. C. Halpin, “Primer on Composite Materials: Analysis,” TECHNOMIC publishing co, ISBN 87762-349-X, 1984.
  21. [21] R. Talreja, “Fatigue of Fibrous Composite Materials,” TECHNOMIC publishing co, ISBN 87762-516-6, 1987.
  22. [22] J. R. Hancock (Ed.), “Fatigue of Fibrous Composite Materials,” ASTM STP 569, 1973.
  23. [23] K. L. Riefsnider and K. N. Lauraitis (Eds.), “Fatigue of Fibrous Composite Materials,” ASTM STP 636, 1976.
  24. [24] K. N. Lauraitis (Ed.), “Fatigue of Fibrous Composite Materials,” ASTM STP 723, 1979.
  25. [25] H. B. Dexter and D. J. Baker, “Flight Service Environmental Effects On Composite Materials And Structures,” Advanced Performance Materials, Vol.1, No.1, pp. 51-85, 1994.
  26. [26] K. Noguchi, K. Yoshioka, and A. Kitano, “Accelerated Durability Test Results of CFRP,” CDW '98, pp. 11/1-11/13, 1998.
  27. [27] K. Yoshioka, A. Kitano, and K. Noguchi, “Durability of Interlaminar-toughened Structural Composites,” The 9th European-Japanese Symposium on Composite Materials, May 25-28, Hamburg Germany, 2004.
  28. [28] Y. Kawazu, T. Norita, and M. Fujiwara, “Static Fatigue Behavior of Carbon fiber/Epoxy Strands,” Journal of the Society of Fiber Science and technology, Vol.31, No.8, pp. 311-316, 1975.
  29. [29] A. G. Miller, D. T. Lovell, and J. C. Seferis, “The evolution of an aerospace material: Influence of design, manufacturing and in-service performance,” Composite Structures, Vol.27, pp. 193-206, 1994.
  30. [30] R. Maguire, R. Boyer, I. Burford, K. Davis, M. Mohaghegh, and J. Pryor, “An Integrated Approach to Aircraft Material Development,” Invited paper for AIAA Journal of Aircraft Special Edition, 2004.
  31. [31] C. W. Schneider and J. C. Leslie, “A Historical Perspective of Aeronautical Airframe Applications of Composite Materials,” SME Technical Paper, pp. 1-15, 2003.
  32. [32] R. Messinger, “Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration,” NASA/CR-2008-215120, 2008.
  33. [33] “Lifecycle Assessment of Aircraft, Automobile and Windmill,” Japan Carbon Fiber Association, http://www.carbonfiber.gr.jp/english/tech/lca.html [access available at April 23, 2016]
  34. [34] S. K. Mazumdar, “Composites Manufacturing,” CRC press, ISBN 0-8493-0585-3, 2002.
  35. [35] J. Takahashi, N. Matsutsuka, T. Okazumi, K. Uzawa, I. Ohsawa, K. Yamaguchi, and A. Kitano, “Mechanical Properties of Recycled CFRP by Injection Molding Method,” 16th International Conference on Composite Materials, 2007.
  36. [36] N. Hirano, A. Tsuchiya, T. Okabe, H. Sasaki, and M. Honma, “New stampable CFRTP sheet with excellent mechanical properties,” 12th Japan International SAMPE Symposium & Exhibition, Section AT-6 (CD-ROM), 2011.
  37. [37] C. D. Rudd, A. C. Long, K. N. Kendall, and C. G. E. Mangin, “Liquid Moulding Technologies,” SAE International, Woodhead Publishing, ISBN 1-85573-242-4, 1997.
  38. [38] I. Taketa, K. Yamaguchi, E. Wadahara, M. Yamasaki, T. Sekido, and A. Kitano, “The CFRP Automobile Body Project in Japan,” The 12th US-Japan Conference on Composite Materials, pp. 411-421, Sep. 2006.
  39. [39] T. Kyono, Y. Kimoto, and Y. Kawanomoto, “Carbon Fiber Composites Applications for Auto Industries,” SPEA, 2003.
  40. [40] F. Yanagishita, “Cutting of CFRP,” Nikkan-kogyo shinbunsha (014) ISBN978-4-526-07346-5.
  41. [41] K. Yoshioka, A. Kitano, and K. Noguchi, “Edge Finishing Effects on Edge Delamination Strength of CFRP Laminates,” 3rd Japan International SAMPE Symposium, Vol.1, pp. 296-299, 1993.
  42. [42] A. Kitano, K. Yoshioka, and K. Noguchi, “Edge Finishing Effects on Transverse Cracking of Cross-Ply CFRP Laminates,” ICCM-9, Vol.5, pp. 169-176, 1993.
  43. [43] S. Abrate and D. A. Walton, “Machining of composite materials. Part I : Traditional methods,” Composites Manufacturing, Vol.3, No.2, pp. 75-83, 1992.
  44. [44] S. Abrate and D. A. Walton, “Machining of composite materials. Part II : Non-Traditional methods,” Composites Manufacturing, Vol.3, No.2, pp. 85-94, 1992.
  45. [45] N. Bhatnacar, N. Ramakrishnan, N. K. Naik, and R. Komanduri, “On the Machining of Fiber Reinforced Plastic (FRP) Composite Laminates,” International Journal of Machine Tools and Manufacture, Vol.35, No.5, pp. 701-716, 1995.
  46. [46] A. Hosokawa, N. Hirose, T. Ueda, and T. Furumoto, “High-quality machining of CFRP with high helix end mill,” Manufacturing Technology, Vol.63, pp. 89–92, 2014.
  47. [47] M. Ramulu and D. Arola, “Water jet and abrasive water jet cutting of unidirectional carbon/epoxy composite,” Composites, Vol.24, pp. 299-308, 1993.
  48. [48] K.-W. Jung, Y. Kawahito, and S. Katayama, “Ultra High Speed Laser Cutting of CFRP Using a Scanner Head,” Transaction of JWRI, Vol.42, No.2, pp. 9-14, 2013.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 13, 2018