single-au.php

IJAT Vol.10 No.1 pp. 41-47
doi: 10.20965/ijat.2016.p0041
(2016)

Paper:

Nano Texturing and Self-Organization Process for Development of Optical Functional Surface

Masahiko Yoshino, Takayuki Ueno, and Motoki Terano

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Received:
August 3, 2015
Accepted:
September 2, 2015
Online released:
January 4, 2016
Published:
January 5, 2016
Keywords:
nano plastic forming (NPF), thermal dewetting, functional surface, optical metamaterial, double-layer nanorod array
Abstract

A new fabrication process for an optical resonator is developed by means of a combination of surface texturing using nano plastic forming and self-organization using thermal dewetting. Process conditions are optimized to fabricate an optical resonator that has a double-layer Au nanorod array. The nanorods are 450 nm in length and 150 nm in width. The extinction spectrum of the double-layer nanorod array is measured to evaluate its optical characteristics. It is found that the measured extinction peak corresponds to the theoretical resonant wavelength of a parallel nanorod resonator. It is expected that the developed double-layer nanorod array can be utilized to generate the negative refractive index of metamaterial.

Cite this article as:
M. Yoshino, T. Ueno, and M. Terano, “Nano Texturing and Self-Organization Process for Development of Optical Functional Surface,” Int. J. Automation Technol., Vol.10, No.1, pp. 41-47, 2016.
Data files:
References
  1. [1]  S. A. Maier and H. A. Atwater, “Plasmonics: Localozation and guiding of electromagnetic energy in metal/dielectric structures,” Applied Physics Review, Vol.98, 011101, 2005.
  2. [2]  J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. Garcia de Abajo, “Optical Properties of Gold Nanorings,” Physical Review Letters, Vol.90, No.5, 057401, 2003.
  3. [3]  M. Yoshino, H. Osawa, and A. Yamanaka, “Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods,” J. Micromec. Microeng., Vol.21, 125017, 2011.
  4. [4]  W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” materialstoday, Vol.9, No.7-8, pp. 28-35, 2006.
  5. [5]  V. M. Shalaev, “Optical negative-index materials,” Nature Photonics, Vol.1, pp. 41-48, 2007.
  6. [6]  J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett., Vol.94, 197401, 2005.
  7. [7]  X. Wei, H. Shi, X. Dong, Y. Lu, and C. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structure,” Applied Physics Letters, Vol.97, 011904, 2010.
  8. [8]  V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Physical Review Letters, Vol.105, 233908, 2010.
  9. [9]  R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Physical Review E, Vol.70, 046608, 2004.
  10. [10]  J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Optical Letters, Vol.34, No.5, pp. 644-646, 2009.
  11. [11]  Y. Avitzour, Y. A. Urhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Physical Review B, Vol.79, 045131, 2009.
  12. [12]  N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett., Vol.100, 207402, 2008.
  13. [13]  X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature materials, Vol.7, pp. 435-441, 2008.
  14. [14]  K. Aydin, I. Bulu, and E. Ozbay, “Subwavelength resolution with a negative-index metamaterial superlens,” Appl. Phys. Lett., Vol.90, 254102, 2007.
  15. [15]  B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, and L. Menon, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett., Vol.96, 023114, 2010.
  16. [16]  J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, Vol.312, pp. 1780-1782, 2006.
  17. [17]  W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature photonics, Vol.1, pp. 224-228, 2007.
  18. [18]  M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, and M. Fiebig, “Investigation of the nonlinear optical properties of metamaterials by second harmonic generation,” Appl. Phys. B, Vol.105, pp. 149-162, 2011.
  19. [19]  N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” nature materials, Vol.7, pp. 31-37, 2007.
  20. [20]  G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Optics Letters, Vol.32, No.1, pp. 53-55, January 2007.
  21. [21]  Jason Valentine, Shuang Zhang, Thomas Zentgraf, Erick Ulin-Avila, Dentcho A. Genov, Guy Bartal, and Xiang Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature, Vol.455, pp. 376-379, 2008.
  22. [22]  M. M. Hossain and M. Gu, “Fabrication methods of 3D periodic metallic nano/microstructures for photonics applications,” Laser Photonics Rev., Vol.8, No.2, pp. 233-249, 2014.
  23. [23]  F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic micro/nanostructures by two-photon polymerization for metamaterials,” Proc. of SPIE, Vol.6324, 63240T, 2006.
  24. [24]  V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Frachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Optics Letters, Vol.30, No.24, pp. 3356-3358, 2005.
  25. [25]  Z. Li, M. Yoshino, and A. Yamanaka, “Fabrication of three-dimensional ordered nano-dot array structures by a thermal dewetting method,” Nanotechnology, Vol.23, 485303, 2012.
  26. [26]  W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Optics Express, Vol.15, No.6, pp. 3333-3341, 2007.
  27. [27]  P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, Vol.6, No.12, pp. 4370-4379, 1972.
  28. [28]  N.-H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Physical Review B, Vol.85, 075120, 2012.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Aug. 21, 2019