IJAT Vol.10 No.1 pp. 4-15
doi: 10.20965/ijat.2016.p0004


Functional Texture Design and Texturing Processes

Nobuyuki Moronuki

Tokyo Metropolitan University
6-6 Asahigaoka, Hino-shi, Tokyo 191-0065, Japan

August 4, 2015
October 16, 2015
Online released:
January 4, 2016
January 5, 2016
texture, functionality, processes, top-down, bottom-up
Various functions can be obtained by applying regular patterns or textures to surfaces. Depending on the function, the required dimensions of the texture, such as the pitch, vary over a wide range: from nanometers for optical function to millimeters for friction. In addition, the high aspect ratio of the cross sectional profile or the hierarchical structure of a micro- or nano-structure is required to control the wettability, for example. This paper reviews various texturing processes as well as the functionalities thus attained and their application.
Cite this article as:
N. Moronuki, “Functional Texture Design and Texturing Processes,” Int. J. Automation Technol., Vol.10 No.1, pp. 4-15, 2016.
Data files:
  1. [1] K. Autumn, “How Gecko Toes Stick,” American Scientist, Vol.94, pp. 124-132, 2006.
  2. [2] P. Forbes, “The Gecho’s Foot,” Harper-Collins Pub., 2007.
  3. [3] A. Nakajima, “Control of Solid Surfaces,” Uchida Rokakuho Publishing, 2007 (in Japanese).
  4. [4] R. Bappert, S. Benner, B. Haecker, U. Kern, and G. Zweckbronner, Bionik, Landesmuseum füur Tecknik und Arbeit in Mannheim, 1998.
  5. [5] M. Shimomura, “New Trends in Next Generation Biomimetic Material Technology: Learning from Biodiversity,” Science & Technology Trends Quarterly Review, NISTEP Science & Technology Foresight Center, Vol.037, pp. 53-75, 2010.
  6. [6] C. J. Evans and J. B. Bryan, “/“Structured,” “Textured” or “Engineered” Surfaces,” Annals of CIRP, Vol.48, No.2, pp. 541-556, 1999.
  7. [7] S. Shibuichi, T. Onda, N. Satoh, and K. Tsujii, “Super Water-Repellent Surfaces Resulting from Fractal Structure,” J. Phys. Chem., Vol.100, pp. 19512-19517, 1996.
  8. [8] T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, “Super-Water Repellent Fractal Surfaces,” Langmuir, Vol.12, No.8, pp. 2125-2127, 1996.
  9. [9] A. B. D. Cassie and S. Baxter, “Wettability of Porous Surface,” Trans. Faraday Soc., Vol.40, pp. 546-551, 1944.
  10. [10] J. Bico, U. Thiele, and D. Quere, “Wetting of textured surfaces,” Colloids and Surfaces, A: Physicochemical and Engineering Aspects Vol.206, pp. 41-46, 2002.
  11. [11] Y. Inoue, Y. Yoshimura, Y. Ikeda, and A. Kohno, “Effects of Roughness and Chemical Composition of an Ar Ion-Implanted Fluorine-Polymer on Water Repellency,” Journal of The Surface Finishing Society of Japan, Vol.51, No.5, pp. 512-517, 2000 (in Japanese).
  12. [12] W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Oener, J. Youngblood, and T. J. McCarthy, “Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, Vol.15, No.10, pp. 3395-3399, 1999.
  13. [13] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,” Langmuir, Vol.16, No.13, pp. 5754-5760, 2000.
  14. [14] T-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, and J. Aizenberg, “Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity,” Nature, Vol.22, No.477, pp. 443-447, 2011.
  15. [15] A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, and R. E. Cohen, Robust omniphobic surfaces, Proceedings of the National Academy of Sciences, Vol.105, pp. 18200-18205, 2008.
  16. [16] E. Brinksmeier, R. Gl”abe, and Lars Schöonemann, “Review on diamond-machining processes for the generation of functional surface structures,” CIRP Journal of Manufacturing Science and Technology Vol.5, pp. 1-7, 2012.
  17. [17] E. Brinksmeier, O. Riemer, R. Gl”abe, B. Lüunemann, C. v. Kopylow, C. Dankwart, and A. Meier, “Submicron functional surfaces generated by diamond machining,” CIRP Annals – Manufacturing Technology Vol.59, No.1, pp. 535-538, 2010.
  18. [18] S. R. Patterson and E. B. Magrab, “Design and testing of a fast tool servo for diamond turning,” Precision Engineering, Vol.7, Issue 3, pp. 123-128, 1985.
  19. [19] T. A. Dow, M. H. Miller, and P. J. Falter, “Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces,” Precision Engineering, Vol.13, Issue 4, pp. 243-250, 1991.
  20. [20] D. G. Thakur, B. Ramamoorthy, and L. Vijayaraghavan, “Effect of cutting parameters on the degree of work hardening and tool life during high-speed machining of Inconel 718,” International Journal of Advanced Manufacturing Technology, Vol.59, No.5-8, pp. 483-489, 2012.
  21. [21] Y-L. Chen, S. Wang, Y. Shimizu, S. Ito, W. Gao, and B-F. Ju, “An in-process measurement method for repair of defective microstructures by using a fast tool servo with a force sensor,” Precision Engineering, Vol.39, pp. 134-142, 2015.
  22. [22] K. Salonitis, “On surface grind hardening induced residual stresses,” Procedia CIRP Vol.13, pp. 264-269, 2014.
  23. [23] D. Meyer, E. Brinksmeier, and F. Hoffmann, “Surface hardening by cryogenic deep rolling,” Procedia Engineeting, Vol.19, pp. 258-263, 2011.
  24. [24] X. Wang, K. Adachi, K. Otsuka, and K. Kato, “Optimization of the surface texture for silicon carbide sliding in water,” Applied Surface Science Vol.253, pp. 1282-1286, 2006.
  25. [25] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumg”artel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I. Orientation Dependence and Behavior of Passivation Layers,” Journal of Electrochemical Society, Vol.137, No.11, pp. 3612-3626, 1990.
  26. [26] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, and J. Nijs, “Improved anisotropic etching process for industrial texturing of silicon solar cells,” Solar Energy Materials and Solar Cells, Vol.57, Issue 2, 26, pp. 179-188, 1999.
  27. [27] Y. He, C. Jiang, H. Yin, J. Chen, and W. Yuan, “Superhydrophobic silicon surfaces with micro–nano hierarchical structures via deep reactive ion etching and galvanic etching,” Journal of Colloid and Interface Science Vol.364, pp. 219-229, 2011.
  28. [28] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Göosele, “Metal-Assisted Chemical Etching of Silicon: A Review,” Advanced Materials, Vol.23, pp. 285-308, 2011.
  29. [29] N. Geyer, B. Fuhrmann, Z. Huang, J. de Boor, H. S. Leipner, and P. Werner, “Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films As Catalysts,” Journal of Physical Chemistry C, Vol.116, pp. 13446-13451, 2012.
  30. [30] X. Li, “Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics,” Current Opinion in Solid State and Materials Science Vol.16, pp. 71-81, 2012.
  31. [31] X. Geng, Z. Qi, M. Li, B. K. Duan, L. Zhao, and P. W. Bohn, “Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts,” Solar Energy Materials & Solar Cells, Vol.103, pp. 98-107, 2012.
  32. [32] K. Rykaczewski, A. T. Paxson, M. Staymates, M. L. Walker, X. Sun, S. Anand, S. Srinivasan, G. H. McKinley, J. Chinn, John H. J. Scott, and K. K. Varanasi, “Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces,” Scientific Reports, Vol.4, 4158, 2014.
  33. [33] R. C. Tiberio, M. J. Rooks, C. Chang, C. F. Knollenberg, E. A. Dobisz, and A. Sakdinawat, “Vertical directionality-controlled metal-assisted chemical etching for ultrahigh aspect ratio nanoscale structures,” Vacuum Science and Technolgies B, Nanotechnol Microelectron Mater Process Meas Phenom, Vol.32, No.6, pp. 06FI01-1-06FI01-5, 2014.
  34. [34] B. He, W. Chen, and Q. J. Wang, Surface Texture Effect on Friction of a Microtextured Poly(dimethylsiloxane) (PDMS),” Tribology Letter, Vol.31, pp. 187-197, 2008.
  35. [35] A. Tsipenyuk and M. Varenberg, “Use of biomimetic hexagonal surface texture in friction against lubricated skin,” Journal of the Royal Society Interface, Vol.0113, 2014.
  36. [36] I. Etsion, “State of the Art in Laser Surface Texturing,” Journal of Tribology, Trans ASME, Vol.127, pp. 248-253, 2005.
  37. [37] A. Dunn, J. V. Carstensen, K. Wlodarczyk, E. B. Hansen, J. Gabzdyl, P. M. Harrison, J. D. Shephard, and D. P. Hand, “Nanosecond laser texturing for high friction applications,” Optics and Lasers in Engineering, Vol.62, pp. 9-16, 2014.
  38. [38] U. Pettersson and S. Jacobson, “Influence of surface texture on boundary lubricated sliding contacts,” Tribology International Vol.36, pp. 857-864, 2003.
  39. [39] A. Y. Suh, S.-C. Lee, and A. A. Polycarpou, “Adhesion and friction evaluation of textured slider surfaces in ultra-low flying head-disk interfaces,” Tribology Letters, Vol.17, No.4, pp. 739-749, 2004.
  40. [40] K. M. T. Ahmmed, C. Grambow, and A-M. Kietzig, “Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining,” Micromachines, Vol.5, pp. 1219-1253; doi:10.3390/mi5041219, 2014.
  41. [41] A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett., Vol.82, pp. 4462-4464, 2003.
  42. [42] M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano, Vol.3, pp. 4062-4070, 2009.
  43. [43] A. Serpengüuzel, A. Kurt, I. Inançc, J. E. Cary, and E. Mazur, “Luminescence of black silicon,” Journal of Nanophotonics, Vol.2, 021770, 2008.
  44. [44] K. Nishio, T. Yanagishita, S. Hatakeyama, M. Maekawa, and H. Masuda, “Fabrication of Ideally Ordered Anodic Porous Alumina with Large Area by Vacuum Deposition of Al onto Mold,” Journal of vacuum science & technology, B, 26, L10, 2008.
  45. [45] W. Lee, R. Ji, U. Göosele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nature materials, Vol.5, pp. 741-747, 2006.
  46. [46] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two dimensional crystallization,” Nature, Vol.361, p. 26, 1993.
  47. [47] A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into morphocolored two-dimensional arrays,” Langmuir Vol.12, pp. 1303-1311, 1996.
  48. [48] N. Moronuki and W-R. Zhang, “Patterned Self-Assembly of Fine Particles and Its Application to Polishing Tool,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.6, No.6, pp. 792-799, 2012.
  49. [49] N. Moronuki, A. Kaneko, and K. Takada, “Patterned Self-Assembly of Fine Particles as a Proposal of Precisely Allocated Cutting-Edge Tool,” International Journal of Automation Technology, Vol.5, No.3, pp. 289-293, 2011.
  50. [50] J. Park, et al., “Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing,” Langmuir, Vol.22, pp. 3506-3513, 2006.
  51. [51] H. Kobayashi, N. Moronuki, and A. Kaneko, “Self-assembly of Fine Particles Applied to the Production of Antireflective Surfaces,” International Journal of Precision Engineering and Manufacturing, Vol.9, No.1, pp. 25-29, 2008.
  52. [52] H-E. Schaefer, Nanoscience, Springer, 2010.
  53. [53] H.-A. Klok and S. Lecommandoux, “Supramolecular Materials via Block Copolymer Self-Assembly,” Advanced Materials, Vol.13, No.16, pp. 1217-1229, 2001.
  54. [54] S. C. Warren, L. C. Messina, L. S. Slaughter, M. Kamperman, Q. Zhou, S. M. Gruner, F. J. DiSalvo, and U. Wiesner, “Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly,” Science Vol.27, Vol.320 No.5884, pp. 1748-1752, 2008.
  55. [55] C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer, Vol.44, pp. 6725-6760, 2003.
  56. [56] K. W. Guarini, C. T. Black, K. R. Milkove, and R. L. Sandstrom, “Nanoscale patterning using self-assembled polymers for semiconductor applications,” J. Vac. Sci. Technol. B 19, pp. 2784-2787, 2001.
  57. [57] X. Deng, H. Kousaka, T. Tokoroyama, and N. Umehara, “Deposition and tribological behaviors of ternary BCN coatings at elevated temperatures,” Surface and Coatings Technology Vol.259, pp. 2-6, 2014.
  58. [58] X. Deng, H. Kousaka, T. Tokoroyama, and N. Umehara, “Tribological behaviors of tetrahedral amorphous carbon (ta-C) coatings at elevated temperature,” Triblogy International, Vol.75, pp. 98-103, 2014.
  59. [59] T. Hashimoto, K. Tsutsumi, and Y. Funaki, “Nanoprocessing Based on Bicontinuous Microdomains of Block Copolymers:? Nanochannels Coated with Metals,” Langmuir, Vol.13, No.26, pp. 6869-6872, 1997.
  60. [60] T. Moro, Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U. Chung, K. Nakamura, and H. Kawaguchi, “Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis,” Nature Materials Vol.3, pp. 829-836, 2004.
  61. [61] T. Moro, Y. Takatori, K. Ishihara, K. Nakamura, and H. Kawaguchi, “Grafting of biocompatible polymer for longevity of artificial hip joints,” Clinical orthopaedics and related research, Vol.453, pp. 58-63, 2006.
  62. [62] T. Moro, H. Kawaguchi, K. Ishihara, M. Kyomotoa, T. Karita, H. Ito, K. Nakamura, and Y. Takatori, “Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads,” Biomaterials, Vol.30, Issue 16, pp. 2995-3001, 2009.
  63. [63] Y. Ishikawa, K. Hiratsuka, and T. Sasada, “Role of water in the lubrication of hydrogel,” Wear, Vol.261, Issues 5-6, 2006, pp. 500-504.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024