IJAT Vol.9 No.6 pp. 655-661
doi: 10.20965/ijat.2015.p0655


Fabrication of Microneedle Mimicking Mosquito Proboscis Using Nanoscale 3D Laser Lithography System

Masato Suzuki, Takahiro Sawa, Tomokazu Takahashi, and Seiji Aoyagi

Kansai University
3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

May 20, 2015
October 5, 2015
November 5, 2015
microneedle, rapid prototyping, biomimetics, mosquito, low invasive treatment
A mosquito’s proboscis, which is used for sucking blood, consists of seven complicated parts. For example, the labrum has a hollow structure, and the maxillae have micrometer-sized tooth like projections on its tip. In this study, microneedles imitating one labium and two maxillae were fabricated using a precision three-dimensional laser lithography system “Nanoscribe.” The maximum length of the fabricated microneedle was 2.0 mm, the minimum length required to reach human capillary blood vessel underneath the epidermis.
Cite this article as:
M. Suzuki, T. Sawa, T. Takahashi, and S. Aoyagi, “Fabrication of Microneedle Mimicking Mosquito Proboscis Using Nanoscale 3D Laser Lithography System,” Int. J. Automation Technol., Vol.9 No.6, pp. 655-661, 2015.
Data files:
  1. [1] P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch, and R. A. Normann, “A Silicon-Based, Three-Dimensional Neural Interface, Manufacturing Processes for an Intracortical Electrode Array,” IEEE Trans. Biomed. Eng., Vol.38, No.8, pp. 758-768, 1991.
  2. [2] H. Yagyu, S. Hayashi, and O. Tabata, “Fabrication of Plastic Micro Tip Array using Laser Micromachining of Nanoparticles Dispersed Polymer and Micromolding,” IEEJ Trans. SM, Vol.126, No.1, pp. 7-13, 2006.
  3. [3] J. Park, S. Davis, Y. Yoon, M. R. Prausnitz, and M. G. Allen, “Micromachined Biodegradable Microstructures,” Proc. MEMS ’03, pp. 371-374, 2003.
  4. [4] N. Matsuzuka, Y. Hirai, and O. Tabata, “Prediction Method of 3-D Shape Fabricated by Double Exposure Technique in Deep X-ray Lithography (D2XRL),” Proc. MEMS ’06, pp. 186-189, 2006.
  5. [5] S. J. Moon and S. S. Lee, “Fabrication of Microneedle Array using Inclined LIGA Process,” Proc. Transducers ’03, pp. 1546-1549, 2003.
  6. [6] K. Najafi, J. Ji, and K. D. Wise, “Scaling Limitations of Silicon Multichannel Recording Probes,” J. Biomed. Eng., Vol.37, No.1, pp. 1-11, 1990.
  7. [7] S. Chandrasekaran, J. D. Brazzle, and A. B. Frazier, “Surface Micromachined Metallic Microneedles,” J. MEMS, Vol.12, No.3, pp. 281-288, 2003.
  8. [8] A. N. Clement, “The Biology of Mosquitoes,” CABI Publishing, pp. 224-234, 2000.
  9. [9] K. Oka, S. Aoyagi, Y. Arai, Y. Isono, G. Hashiguchi, and H. Fujita, “Fabrication of a Micro Needle for a Trace Blood Test,” Sens. Actuators, Vol.97-98C, pp. 478-485, 2002.
  10. [10] S. Aoyagi, H. Izumi, and M. Fukuda, “Biodegradable Polymer Needle with Various Tip Angles and Effect of Vibration and Surface Tension on Easy insertion,” Sens. Actuators, Vol.A143, pp. 20-28, 2008.
  11. [11] H. Izumi, M. Suzuki, S. Aoyagi, and T. Kanzaki, “Realistic Imitation of Mosquito’s Proboscis, Electrochemically Etched Sharp and Jagged Needles and Their Cooperative Inserting Motion,” Sens. Actuators, Vol.A165, pp. 115-123, 2011.
  12. [12] S. Aoyagi, Y. Takaoki, H. Takayanagi, C. H. Huang, T. Tanaka, M. Suzuki, T. Takahashi, T. Kanzaki, and T. Matsumoto, “Equivalent Negative Stiffness Mechanism Using Three Bundled Needles Inspired by Mosquito for Achieving Easy Insertion,” Proc. 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2012), pp. 2295-2300, 2012.
  13. [13] C. H. Huang, T. Tanaka, Y. Takaoki, H. Izumi, T. Takahashi, M. Suzuki, and S. Aoyagi, “Fabrication of Metallic Microneedle by Electroplating and Sharpening of it by Electrochemical Etching,” IEEJ Trans. on Sensors and Micromachines, Vol.131, No.11, pp. 373-380, 2011.
  14. [14] T. Tanaka, T. Takahashi, M. Suzuki, and S. Aoyagi, “Development of Minimally Invasive Microneedle Made of Tungsten – Sharpening Through Electrochemical Etching and Hole Processing for Drawing up Liquid Using Excimer Laser –,” Journal of Robotics and Mechatronics, Vol.25, No.4, pp. 755-761, 2013.
  15. [15] Nanoscribe GmbH homepage, [accessed October 28, 2015]
  16. [16] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science, Vol.325, pp. 1513-1515, 2009.
  17. [17] N. Téetreault, G. V. Freymann, M. Deubel, M. Hermatschweiler, P. W. Fabian, J. Sajeev, M. Wegener, and G. A. Ozin, “New Route to Three-Dimensional Photonic Bandgap Materials, Silicon Double Inversion of Polymer Templates,” Advanced Materials, Vol.18, pp. 457-460, 2006.
  18. [18] F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. V. Freymann, M. Wegener, and M. Bastmeyer, “Elastic 3D Scaffolds, Elastic Fully Three-dimensional Microstructure Scaffolds for Cell Force Measurements,” Advanced Materials, Vol.22, pp. 863-906, 2010.
  19. [19] F. Klein, B. Richter, T. Striebel, C. M. Franz, G. V. Freymann, M. Wegener, and M. Bastmeyer, “Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture,” Advanced Materials, Vol.23, pp. 1341-1345, 2011.
  20. [20] N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, “Stiction in surface micromachining,” Journal of Micromechanics and Microengineering, Vol.6, pp. 385-397, 1996.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 23, 2024