single-au.php

IJAT Vol.9 No.5 pp. 502-507
doi: 10.20965/ijat.2015.p0502
(2015)

Paper:

Calibration of Invar Angular Interferometer Optics with Multi-Step Method

Zi Xue, Yao Huang, Heyan Wang, and Hu Lin

National Institute of Metrology
No.18, Bei San Huan Dong Lu, Beijing 100029, China

Received:
February 1, 2015
Accepted:
April 21, 2015
Published:
September 5, 2015
Keywords:
angle measurement, angle interferometer, calibration, multi-step method
Abstract

At the National Institute of Metrology (NIM), China, the Small Angle Measuring System, which is based on the sine principle, was developed as the national primary standard for the plane angle in an angular measuring range of ±5°. The measurement uncertainty of this system is dominated by the accuracy of an invar angular interferometer optical system. To calibrate this angle interferometer system, a series of known reference standards were generated with a multi-step method using a double-deck rotary table. The measurement uncertainty of the calibration is estimated to be approximately 0.05’’ (k=2).

Cite this article as:
Z. Xue, Y. Huang, H. Wang, and H. Lin, “Calibration of Invar Angular Interferometer Optics with Multi-Step Method,” Int. J. Automation Technol., Vol.9, No.5, pp. 502-507, 2015.
Data files:
References
  1. [1]  BIPM SI Brochure 8th edn, http://www.bipm.org/en/si/
    [Accessed March 5, 2014]
  2. [2]  A. Just, M. Krause, R. Probst, and R. Wittekopf, “Calibration of high-resolution electronic autocollimators against an angle comparator,” Metrologia, Vol.40, pp. 288-294, 2003.
  3. [3]  R. D. Geckeler, I. Weingartner, A. Just, and R. Probst, “Use and traceable calibration of autocollimators for ultra-precision measurement of slop and topography,” Proc. SPIE, Vol.4401, pp. 184-95, 2001.
  4. [4]  R. D. Geckeler and A. Just, “Optimized use and calibration of autocollimators in deflectometry,” Proc. SPIE, Vol.6704, 670470, 2007.
  5. [5]  R. D. Geckeler and A. Just, “Distance-dependent influences on angle metrology with autocollimators in deflectometry,” Proc. SPIE, Vol.7077, 70770B, 2008.
  6. [6]  J. C. Evans and C. O. Taylerson, “Measurement of Angle in Engineering,” National Physical Laboratory Notes on Applied Science, 1986.
  7. [7]  P. J. Sim, “Angle standards and their calibration,” Modern techniques in Metrology, pp. 102-121, 1984.
  8. [8]  R. D. Geckeler and A. Just, “Angle comparison using an autocollimator EURAMET.L-K3 2009 Technical Protocol,” EURAMET Project No.1074.
  9. [9]  http://kcdb.bipm.org/AppendixB/appbresults/EURAMET.L-K3.2009/ [Accessed March 25, 2014]
  10. [10]  T. Yandayan, B. Ozgur, N. Karaboce, and O. Yaman, “High precision small angle generator for realization of SI unit of plane angle and calibration of high precision autocollimators,” Meas. Sci. Technol., Vol.23, 094006, 2012.
  11. [11]  W. T. Estler and Y. H. Queen, “An advanced angle metrology system,” CIRP Ann., Vol.42, pp. 573-576, 1993.
  12. [12]  W. T. Estler, “Uncertainty Analysis for Angle Calibrations Using Circle Closure,” J. Res. Natl. Inst. Stand. Technol., Vol.103, pp. 141-151, 1998.
  13. [13]  R. Probst, R. Wittekopf, M. Krause, H. Dangschat, and A. Ernst, “The new PTB angle comparator,” Meas. Sci. Technol., Vol.9, pp. 1059-1066, 1998.
  14. [14]  T. Yandayan, “Application of the novel technique for calibration of 23-sided polygon with non-integer subdivision of indexing table,” IMEKO 8th Int. Symp. on ISMQC, Vol.12-15, pp. 769-74, 2004.
  15. [15]  T. Watanabe, H. Fujimoto, K. Nakayama, M. Kajitani, and T. Masuda, “Calibration of polygon mirror by the rotary ecncoder calibration system,” Proc. 17th IMEKO World Congress, Vol.22-27, pp. 1890-1893, 2003.
  16. [16]  S. Kiyono, S. Zhang, and T. Uda, “Self-calibration of precision angle sensor and polygon mirror,” Measurement, Vol.21, pp. 125-136, 1997.
  17. [17]  ISO/IEC 2008 Uncertainty of measurement: part 3, “Guide to the expression of uncertainty in measurement,” ISO/IEC Guide 98-3, 2008.
  18. [18]  T. Masuda and M. Kajitani, “High Accuracy Calibration System for Angular Encoders,” J. of Robotics and Mechatronics, Vol.5, No.5, pp. 448-452, 1993.
  19. [19]  T. Watanabe, H. Fujimoto, and T. Masuda, “Self-Calibratable Rotary Encoder,” J. of Physics, Conf. Series, Vol.13, pp. 240-245, 2005.
  20. [20]  R. D. Geckeler, A. Link, M. Krause, and C. Elster, “Capabilities and limitations of the self-calibration of angle encoders,” Meas. Sci. Technol., Vol.25, 055003, 2014.
  21. [21]  T. Masuda and M. Kajitani, “High accuracy calibration system for angular encoders,” J. of Robotics and Mechatronics, Vol.5, pp. 448-452, 1993.
  22. [22]  T. Watanabe, H. Fujimoto, K. Nakayama, T. Masuda, and M. Kajitani, “Automatic high precision calibration system for angle encoder,” Proc. SPIE, Vol.5190, pp. 400-409, 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Aug. 21, 2019