Paper:
Calibration of Double Priority Camera Based on Circle Planar Target
Rui-Yin Tang*,†, Hong-Kun He*, Zhou-Mo Zeng**, and Feng Gao*
*College of Electrical Engineering, Hebei United University
46 Xinhua Road, Tangshan 063009, China
**State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University
92 Weijin Road, Nankai District, Tianjin 300072, China
†corresponding author
- [1] J.-J. Fan, F. Liu, and Q. Xu, “A Camera Self-calibration Method Based on Genetic Algorithm and LM Algorithm [J],” Journal of Nanjing University of Posts and Telecommunications (Natural Science), Vol.31, No.5, pp. 23-26, 2011.
- [2] H. Hu and Z. Jiang, “Camera self-calibration method based on genetic algorithm[J],” Computer Engineering and Design, Vol.30, No.1, pp. 204 -206, 2009.
- [3] W. Faig, Calibration of close-range photogrammetric systems: mathematical formulation, photogrammetrcing, Remote sensing, Vol.41, No.12, pp. 1479-1486, 1975.
- [4] Y. I. Abdel-Aziz and H. M. Karara, “Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates,” ASP Symposium on Close-Range Photogrammetry, pp. 1-18, 1971.
- [5] Y. Tsai Roger, “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Camera and Lenses,” IEEE Journal of Robotics and Automation, Vol.3, No.4, pp. 323-344, 1987.
- [6] Z. Y. Zhang, “Flexible Camera Calibration by Viewing a Plane from Unknown Orientations,” Proc. ICCV99, pp. 666-673, 1999.
- [7] H. A. Martins, J. R. Birk, and R. B. Kelley, “Camera models based no data from two calibration planes,” Computer Graphics and Imaging Processing, 17, pp. 173-180, 1981.
- [8] R.-Y. Tang, Z.-M. Zeng, H.-K. He, and Z.-K. Chen, “Planeness Measurement of Computer Hard-disk Surface Based on Opto-Mechatronics Technology[J],” International Journal of Automation Technology, pp. 171-175, 2013.
- [9] X. Cao, “Foroosh H Camera calibration without metric information using 1D Objects[J],” International Conference on Image Processing, 2, pp. 1349-1352, 2004.
- [10] P. Hammarstedt, P. Sturm, and A. Heyden, “Degenerate cases and closed-form solutions for camera calibration with one-dimensional objects[J],” 10th IEEE International Conference on Computer Vision, 1, pp. 317-324, 2005.
- [11] X. He, “Estimation of internal and external parameters for camera calibration using 1D pattern [J],” Proceedings of IEEE International Conference on Video and Signal Based Surveillance( AVSS’ 06), IEEE Computer Society, Los Alamitos, CA, USA, pp. 93-93, 2006.
- [12] X.-Q. Meng, H. Li, and Z. Hu, “A new easy camera calibration technique based on circular points [J],” Pattern Recognition, Vol.36, No.5, pp. 1155-1164, 2003.
- [13] C. Harris and M. Stephens, “A combined corner and edge detector[C],” Proceedings 4th Alvey Vision Conference, pp. 147-151, 1988.
- [14] M. Trajkovic and M. Hedley, “Fast corner detection [J],” Image and Vision Computing, Vol.16, No.2, pp. 75-87, 1998.
- [15] P. Kierkegaard, “A method for detection of circular arcs based on the Hough transform [J],” Machine Visio n and Applications, 5, pp. 249-263, 1992.
- [16] X. Peng, W. Jianye, and W. Yanru, “Calculation exact center coordinate of a target circle in camera calibration [J],” Infrared and Laser Engineering, Vol.40, No.7, pp. 1342-1346, 2011.
- [17] J. Guo and X.-Y. Liu, “Sub-pixel target location for camera calibration [J],” Transducer and Microsystem Technologies, Vol.2, pp. 106-108, 2008.
- [18] Y.-D. Qu, C.-S. Cui, and S.-B. Chen, “A Fast Subpixel Edge Measurement Method Based on Sobel-Zernike Moment Operator [J],” Opto-Electronic Engineering, Vol.30, No.5, pp. 59-61, 2003.
- [19] F. Qi, “Camera calibration with one-dimensional objects moving under gravity[J],” Pattern Recognition, Vol.40, No.1, pp. 343-345, 2007.
- [20] F. Qi, “Constraints on general motions for camera calibration with one-dimensional objects[J],” Pattern Recognition, Vol.40, No.6, pp. 1785-1792, 2007.
- [21] Z. Zhang, S. Huang, S. Meng, F. Gao, and X. Jiang, “A simple, flexible and automatic 3D calibration method for a phase calculation-based fringe projection imaging system,” Opt. Express 21, pp. 12218-12227, 2013.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.