Paper:
A Novel Algorithm for Continuous Steel Casting Scheduling with Focus on Quality Property Constraint and Slab Width Maximization
Taiki Ogata*1,*2, Tsuyoshi Okubo*3, Hidetoshi Nagai*3, Masashi Yamamoto*3, Masao Sugi*4, and Jun Ota*1
*1Reseaerch into Artifacts, Center for Engineering, The University of Tokyo
5-1-5 Kakinoha, Kashiwa, Chiba
*2Tokyo Institute of Technology, Kanagawa, Japan
*3NS Solutions Corporation, Kanagawa, Japan
*4The University of Electro-Communications, Tokyo, Japan
- [1] L. Tang, J. Liu, A. Rong, and Z. Yang, “A review of planning and scheduling systems and methods for integrated steel production,” Eur. J. Oper. Res., Vol.133, No.1, pp. 1-20, 2001.
- [2] A. Bellabdaoui and J. Teghem, “A mixed-integer linear programming model for the continuous casting planning,” Int. J. Prod. Econ., Vol.104, No.2, pp. 260-270, 2006.
- [3] A. Atighehchian, M. Bijari, and H. Tarkesh, “A novel hybrid algorithm for scheduling steel-making continuous casting production,” Comput. Oper. Res., Vol.36, No.8, pp. 2450-2461, 2009.
- [4] L. Tang, J. Liu, A. Rong, and Z. Yang, “A mathematical programming model for scheduling steelmaking-continuous casting production,” Eur. J. Oper. Res., Vol.120, No.2, pp. 423-435, 2000.
- [5] L. Tang and J. A. Luo, “A new ILS algorithm for cast planning problem in steel industry,” ISIJ international, Vol.47, No.3, pp. 443-452 2007.
- [6] R. Zhang, K. Lu, K. Huang, and D. Wang, “Graph-based model of cast planning problem and its optimization,” Proceedings of the 2011 Chinese Control and Decision Conference (CCDC), pp. 1606-1611, May, 2011.
- [7] Y. K. Park and J.-M. Yang, “Optimization of mixed casting processes considering discrete ingot sizes,” J. Mech. Sci. Technol., Vol.23, No.7, pp. 1899-1910, 2009.
- [8] Y. K. Park and J.-M. Yang, “Maximizing average efficiency of process time for pressure die casting in real foundries,” Int. J. Adv. Manuf. Technol., Vol.53, No.9-12, pp. 889-897, 2011.
- [9] H. Dong, M. Huang, W. H. Ip, and X. Wang, “Improved variable neighbourhood search for integrated tundish planning in primary steelmaking processes,” Int. J. Prod. Res., Vol.50, No.20, pp. 5747-5761, 2012.
- [10] L. Tang, Y. Zhao, and J. Liu, “An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production,” IEEE T. Evolut. Comput., Vol.18, No.2, pp. 209-225, 2013.
- [11] R. Tamura, M. Nagai, Y. Nakagawa, T. Tanizaki, and H. Nakajima, “Synchronized scheduling method in manufacturing steel sheets,” Int. T. Oper. Res., Vol.5, No.3, pp. 189-199, 1998.
- [12] P. Cowling and W. Rezig, “Integration of continuous caster and hot strip mill planning for steel production,” J. Sched., Vol.3, No.4, pp. 185-208, 2000.
- [13] L. Tang, P. B. Luh, J. Liu, and L. Fang, “Steel-making process scheduling using Lagrangian relaxation,” Int. J. Prod. Res., Vol.40, No.1, pp. 55-70, 2002.
- [14] S. Zanoni and L. Zavanella, “Model and analysis of integrated production–inventory system: The case of steel production,” Int. J. Prod. Econ., Vol.93-94, No.8, pp. 197-205, 2005.
- [15] M. Gravel, W. L. Price, and C. Gagnée, “Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic,” Eur. J. Oper. Res., Vol.143, No.1, pp. 218-229, 2002.
- [16] S. Liu, J. Tang, and J. Song, “Order-planning model and algorithm for manufacturing,” Int. J. Prod. Econ., Vol.100, No.1, pp. 30-43, 2006.
- [17] L. Tang and S. Jiang, “The charge batching planning problem in steelmaking process using Lagrangian relaxation algorithm,” Ind. Eng. Chem. Res., Vol.48, No.16, pp. 7780-7787, 2009.
- [18] L. Tang and G. Wang, “Decision support system for the batching problems of steelmaking and continuous-casting production,” Omega, Vol.36, No.6, pp. 976-991, 2008.
- [19] H. Dong, M. Huang, W. H. Ip, and X. Wang, “On the integrated charge planning with flexible jobs in primary steelmaking processes,” Int. J. Prod. Res., Vol.48, No.21, pp. 6499-6535, 2010.
- [20] L. Tang, G. Wang, J. Liu, and J. Liu, “A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous-casting production,” Naval Research Logistics, Vol.58, No.4, pp. 370-388, 2011.
- [21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, Vol.200, No.4598, pp. 671-680, 1983.
- [22] S. Furao and O. Hasegawa, “Fractal image coding with Simulated Annealing search,” Journal of Advanced Computational Intelligence, Vol.9, No.1, pp. 80-88, 2005.
- [23] M. Cheng, H. Itoh Ozaku, N. Kuwahara, K. Kogure, and J. Ota, “Dynamic Scheduling in Inpatient Nursing,” Int. J. of Automation Technology, Vol.3, No.2, pp. 174-184, 2009.
- [24] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, Vol.1, issue 1, pp. 269-271, 1959.
- [25] J. Y. Chai, T. Sakaguchi, and K. Shirase, “Dynamic Controls of Genetic Algorithm Scheduling in Supply Chain,” Int. J. of Automation Technology, Vol.4, No.2, pp. 169-177, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.