Paper:
Study on Knowledge-Based Product Design Framework for Facilitating the Interaction of Model Based Development and Prototyping
Yutaka Nomaguchi, Masashi Mizuta, Masaya Hirooka,
and Kikuo Fujita
Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- [1] M. H. Ang, Jr, “Editorial: Special Issue on Mechatronics,” Int. J. of Automation Technology, Vol.5, No.6, p. 891, 2011.
- [2] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-Integrated Development of Embedded Software,” Proc. of the IEEE, Vol.91, Issue 1, pp. 145-164, 2003.
- [3] J. Zhang and B. Cheng, “Model-based Development of Dynamically Adaptive Software,” In Proc. – Int. Conf. on Software Engineering, Vol.2006, pp. 371-380, 2006.
- [4] H. Matsubara and K. Hashida, “Partiality of Information and Unsolvability of the Frame Problem,” J. of Japanese Society for Artificial Intelligence, Vol.4, No.6, pp. 695-703, 1989. (in Japanese)
- [5] J. Holt and S. Perry, “SysML for Systems Engineering (Professional Applications of Computing),” The Institution of Engineering and Technology, 2008.
- [6] D. H. Stamatis, “Failure Mode and Effect Analysis: FMEA from Theory to Execution,” ASQCQuality Press,Milwaukee, Wisconsin, 1995.
- [7] Y. Nomaguchi and K. Fujita, “Knowledge Representation Framework for Interactive Capture andManagement of Reflection Process in Product Concepts Development,” Advanced Engineering Informatics, Vol.27, Issue 4, pp. 537-554, 2013.
- [8] The Japan Society of Mechanical Engineers, (Ed.), “JSMEMechanical Engineers’ Handbook Fundamentals β1 : Design Engineering,” The Japan Society of Mechanical Engineers, 2007. (in Japanese)
- [9] S. Mattsson, H. Elmqvist, and M. Otter, “Physical System Modeling with Modelica,” Control Engineering Practice, Vol.6, Issue 4, pp. 501-510, 1998.
- [10] J. McCarthy, “Applications of circumscription to formalizing common-sense knowledge,” Artificial Intelligence, Vol.28, Issue 1, pp. 89-116, 1986.
- [11] D. A. Schön, “The Reflective Practitioner – How Professionals Think in Action,” Basic Books Inc, 1983.
- [12] J. Malin, B. Basham, and R. Harris, “Use of Qualitative Models in Discrete Event Simulation to Analyze Malfunctions in Processing Systems,” Academic Press, 1990.
- [13] G. Engels, R. Heckel, J. Küster, and L. Groenewegen, “Consistency-preserving Model Evolution through Transformations,” Lecture Notes in Computer Science (including subseriesLecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2460 LNCS:212.227, 2002.
- [14] G. Thimm, S. Lee, and Y. Ma, “Towards Unified Modeling of Product Life-Cycles,” Computers in Industry, Vol.57, No.4, pp. 331-341, 2006.
- [15] H. Hibino, T. Sakuma, and M. Yamaguchi, “Evaluation System for Energy Consumption and Productivity in Manufacturing System Simulation,” Int. J. of Automation Technology, Vol.6, No.3, pp. 279-288, 2012.
- [16] T. Gotoh, T. Eguchi, T. Koga, and K.Aoyama, “Modeling for Product Requirements Based on Logical Structure of Product: Model-Driven Development Method for Mechanical/Electrical/Soft Integrated Products Using SysML,” Trans. of the Japan Society of Mechanical Engineers. C, Vol.76, No.771, pp. 2754-2763, 2010. (in Japanese)
- [17] T. Eguchi, T. Gotoh, T. Koga, and K. Aoyama, “Impact Analysis of Design Change Based on Requirement Model of Mechatronics Product,” Trans. of the Japan Society of Mechanical Engineers. C, Vol.76, No.771, pp. 2772-2781, 2010. (in Japanese)
- [18] R. Fukui, S. Kousaka, T. Sato, and M. Shimosaka, “Design Methodology for Human Symbiotic Mmachines based on the Description of User’s Mental Model,” J. of Robotics and Mechatronics, Vol.25, No.4, pp. 726-736, 2013.
- [19] G. Detommasi, R. Vitelli, L. Boncagni, and A. Neto, “Modeling of MARTe-based real-time applications with SysML,” IEEE Trans. on Industrial Informatics, Vol.9, Issue 4, pp. 2407-2415, 2013.
- [20] S. Yoshida, Y. Ueda, and S. Nakajima, “A Study of Model Transformation Method Between UML and Simulink,” IEICE Technical Report. SS, Software Science, Vol.109, Issue 231, pp. 25-30, 2009. (in Japanese)
- [21] M. Abdul Rahman and M. Mizukawa, “Model-based Development and Simulation for Robotic Systems with SysML, Simulink and Simscape Profiles,” Int. J. of Advanced Robotic Systems, Vol.10, No.8, 2013.
- [22] A. Schürr, “Specification of Graph Translators with Triple Graph Grammars,” E.W. Mayr, G. Schmidt, and G. Tinhofer, (Eds.), Proc. of WG ’94 Workshop on Graph-theoretic Concepts in Computer Science, pp. 151-163, 1994.
- [23] Y. Cao, Y. Liu, and C. Paredis, “System-level Model Integration of Design and Simulation for Mechatronic Systems based on SysML,” Mechatronics, Vol.21, Issue 6, pp. 1063-1075, 2011.
- [24] H. Van Der Auweraer, J. Anthonis, S. De Bruyne, and J. Leuridan, “Virtual Engineering at Work: The Challenges for Designing Mechatronic Products,” Engineering with Computers, Vol.29, Issue 3, pp. 389-408, 2013.
- [25] Y. Nomaguchi and K. Fujita, “Ontology Building for Design Knowledge Management Systems Based on Patterns Embedded in Design-for-X Methodologies,” In Proc. of 16th Int. Conf. on Engineering Design (ICED 07), 2007.
- [26] K. Fujita and T. Nishikawa, “Value-Addition Pattern of Consumer Products over Life Stages and Design Assessment Method with Quality Function Deployment,” Trans. of the Japan Society of Mechanical Engineers. C, Vol.67, No.656, pp. 1202-1209, 2001. (in Japanese)
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.