Paper:
Robust Design Method Using Adjustable Control Factors
Takeo Kato*, Masatoshi Muramatsu*, Suguru Kimura**,
and Yoshiyuki Matsuoka***
*Department of Mechanical Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259, Japan
**Graduate School of Science and Technology, Keio University, Japan
***Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama, Kanagawa 238, Japan
- [1] Y. Matsuoka, “Design Science,” Maruzen, Tokyo, 2010.
- [2] S. Sundaresan, K. Ishii, and D. R. Houser, “Design optimization forrobustness using performance simulation programs,” Proc. of theASME ADA, Vol.DE-65-1, pp. 249-256, 1991.
- [3] G. Taguchi, “Taguchi on robust technology development,” ASMEPress, New York, 1993.
- [4] J. C. Yu and K. Ishii, “Design optimization for robustness usingquadrature factorial models,” Engineering optimization, Vol.30,pp. 203-225, 1998.
- [5] J. C. Yu and K. Ishii, “Design for robustness based on manufacturingvariation patterns,” ASME J. of Mechanical Design, Vol.120, No.2, pp. 196-202, 1998.
- [6] M. Arakawa and H. Yamakawa, “A study on Optimum Design Using Fuzzy Numbers as Design Variables,” Proc. of the ASME DETC, DE-82, pp. 463-470, 1995.
- [7] A. D. Belegundu and S. Zhang, “Robustness of Design Through Minimum Sensitivity,” ASME J. of Mechanical Design, Vol.114, No.2, pp. 213-217, 1992.
- [8] G. Emch and A. Parkinson, “Robust optimal design for worstcase tolerances,” ASME J. of Mechanical Design, Vol.116, No.4, pp. 1019-1025, 1994.
- [9] A. Parkinson, C. Sorensen, and N. Pourhassan, “A general approach for robust optimal design,” ASME J. of Mechanical Design, Vol.115, No.1, pp. 74-80, 1993.
- [10] A. Parkinson, “Robust mechanical design using engineering models,” ASME J. of Mechanical Design, Vol.117B, pp. 48-54, 1995.
- [11] B. Ramakrishnan and S. S. Rao, “A general loss function based optimization procedure for robust design,” Engineering optimization, Vol.25, pp. 255-276, 1996.
- [12] J. Zhu and K. L. Ting, “Performance distribution analysis and robust design,” ASME J. of Mechanical Design, Vol.123, No.1, pp. 11-17, 2001.
- [13] R. J. Eggert and R. W. Mayne, “Probabilistic optimal design using successive surrogate probability density functions,” ASME J. of Mechanical Design, Vol.115, No.3, pp. 385-391, 1993.
- [14] A.Watai, S. Nakatsuka, T. Kato, Y. Ujiie, and Y. Matsuoka, “Robust Design Method for Diverse Conditions,” Proc. of the ASME DETC (DETC/CIE2009-87108), 2009.
- [15] T. Kato, A. Watai, Y. Ujiie, and Y. Matsuoka, “Robust Design Method for Objective Characteristics with Nonnormal Distributions and Control Factors with Adjustable Range,” UMTIK 2010 Int. Conf. on Machine Design and Production, 2010.
- [16] S. Kimura, T. Kato, and Y. Matsuoka, “A proposed Robust Design Method for Deriving Adjustable Range,” Advanced Materials Research, Vol.311-313, pp. 2332-2335, 2011.
- [17] Y. Tanimizu, K. Amano, K. Harada, C. Ozawa, and N. Sugimura, “Multi-Objective Production and Transportation SchedulingConsidering Carbon Dioxide Emissions Reductions in Dynamic Supply Chains,” Int. J. of Automation Technology, Vol.6, No.3, pp. 322-330, 2012.
- [18] I. Bouserhane, A. Hazzab, A. Boucheta, B.Mazari, and R.Mostefa, A. M. Rubinov, and J. Zhang, “Optimal Fuzzy Self-Tuning of PI Controller Using Genetic Algorithm for Induction Motor Speed Control,” Int. J. of Automation Technology, Vol.2, No.2, pp. 85-95, 2008.
- [19] A. O. Griewank, “Generalized Descent for Global Optimization,” J Optimization Theory Appl, Vol.34, No.1, pp. 11-39, 1981.
- [20] A. M. Bagirov, A. M. Rubinov, and J. Zhang, “A Multidimensional Descent Method for Global Optimization,” A J. of Mathematical Programming and Operations Research, Vol.58, No.5, pp. 611-625, 2009.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.