Paper:
Cubic Spline Trajectory Planning and Vibration Suppression of Semiconductor Wafer Transfer Robot Arm
Wisnu Aribowo and Kazuhiko Terashima
Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
- [1] K. G. Shin and N. D. McKay, “A dynamic programming approach to trajectory planning of robotic manipulators,” IEEE Trans. on Automatic Control, Vol.AC-31, No.6, pp. 491-511, 1986.
- [2] C. S. Lin, P.R. Chang, and J. Y. S. Luh, “Formulation and optimization of cubic polynomial joint trajectories for industrial robots,” IEEE Trans. on Automatic Control, Vol.AC-28, No.12, pp. 1066-1074, 1983.
- [3] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning of robot manipulators,” IEEE Trans. on Industrial Electronics, Vol.47, No.1, pp. 140-149, 2000.
- [4] A. Gasparetto and V. Zanotto, “A technique for time-jerk optimal planning of robot trajectories,” Robotics and Computer-Integrated Manufacturing, Vol.24, No.3, pp. 415-426, 2008.
- [5] A. Gasparetto, A. Lanzutti, R. Vidoni, and V. Zanotto, “Experimental validation and comparative analysis of optimal time-jerk algorithms for trajectory planning,” Robotics and Computer-Integrated Manufacturing, Vol.28, No.2, pp. 164-181, 2012.
- [6] T. Chettibi, H. E. Lehtihet, M. Haddad, and S. Hanchi, “Minimum cost trajectory planning for industrial robot,” European J. of Mechanics – A/Solids, Vol.23, No. 4, pp. 703-715, 2004.
- [7] J. Z. Kolter and A. Y. Ng, “Task-space trajectories via cubic spline optimization,” 2009 IEEE Int. Conf. on Robotics and Automation, pp. 1675-1682, May 2009.
- [8] B. Demeulenaere, G. Pipeleers, J. De Caigny, J. Swevers, J. De Schutter, and L. Vandenberghe, “Optimal splines for rigid motion systems: a convex programming framework,” J. of Mechanical Design, Vol.131, No.10, pp. 101004-101004-11, 2009.
- [9] B. Demeulenaere, J. De Caigny, G. Pipeleers, J. De Schutter, and J. Swevers, “Optimal splines for rigid motion systems: benchmarking and extenstions,” J. of Mechanical Design, Vol.131, No.10, pp. 101005-101005-13, 2009.
- [10] O. J. M. Smith, “Posicast control of damped oscillatory systems,” Proc. of the IRE, Vol.45, No.9, pp. 1249-1255, 1957.
- [11] N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration,” J. of Dynamic Systems, Measurement, and Control, Vol.112, pp. 76-82, 1990.
- [12] T. Singh and S. R. Vadali, “Robust time-delay control,” J. of Dynamic Systems, Measurement, and Control, Vol.115, pp. 303-306, 1993.
- [13] W. Aribowo, T. Yamashita, K. Terashima, Y. Masui, T. Saeki, T. Kamigaki, and H. Kawamura, “Vibration control of semiconductor wafer transfer robot by building an integrated tool of parameter identification and input shaping,” 2011 IFAC World Congress, pp. 14367-14373, Aug. 2011.
- [14] M. D. Duong, K. Terashima, T. Kamigaki, and H. Kawamura, “Development of a vibration suppression GUI tool based on input preshaping and its application to semiconductor wafer transfer robot,” Int. J. of Automation Technology, Vol.2, No.6, pp. 479-485, 2008.
- [15] L. Biagiotti and C. Melchiorri, “FIR filters for online trajectory planning with time- and frequency-domain specifications,” Control Engineering Practice, Vol.20, No.12, pp. 1385-1399, 2012.
- [16] N. Uchiyama, K. Mori, K. Terashima, T. Saeki, T. Kamigaki, and H. Kawamura, “Optimal motion trajectory generation and real-time trajectory modification for an industrial robot working in a rectangular space,” J. of System Design and Dynamics, Vol.7, No.3, pp. 278-292, 2013.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.