single-au.php

IJAT Vol.8 No.1 pp. 74-82
doi: 10.20965/ijat.2014.p0074
(2014)

Paper:

Effects of Morphology of Nanodots on Localized Surface Plasmon Resonance Property

Truong Duc Phuc*, Masahiko Yoshino*, Akinori Yamanaka**,
and Takatoki Yamamoto*

*Department of Mechanical and Control Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

**Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan

Received:
June 30, 2013
Accepted:
December 5, 2013
Published:
January 5, 2014
Keywords:
gold nanodot, thermal dewetting, nanodot morphology, LSPR
Abstract
In this paper, authors report the effects of process parameters of thermal annealing method on the morphologyand Localized Surface Plasmon Resonance (LSPR) property of gold nanodots. Results show that the nanodots aggregated on a quartz glass substrate are large and sparse, while the nanodots aggregated on a silicon substrate are small and dense. The peak of the absorbance spectra is shifted to a longer wavelength and becomes broader when the gold film is thicker. The absorbance intensity increases with the increase in the gold film thickness. Increase the annealing temperature and/or the annealing time result in a blue shift of the absorbance peak and a decrease in the peak intensity. It is found that the variation in the absorbance peak wavelength and peak intensity closely correlates to the variation in the average circularity of the nanodots. This result suggests that the LSPR of nanodots can be tuned by controlling themorphology, specifically the circularity, of the nanodots.
Cite this article as:
T. Phuc, M. Yoshino, A. Yamanaka, and T. Yamamoto, “Effects of Morphology of Nanodots on Localized Surface Plasmon Resonance Property,” Int. J. Automation Technol., Vol.8 No.1, pp. 74-82, 2014.
Data files:
References
  1. [1] S. Eustis and M. A. El-Sayed, “Why Gold Nanoparticles Are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes,” Chem. Soc. Rev., Vol.35, pp. 209-217, 2006.
  2. [2] S. Pillai and M. A. Green, “Plasmonics for Photovoltaic Applications,” Solar Energy Materials & Solar Cells, Vol.94, No.9, pp. 1481-1486, 2010.
  3. [3] I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface Plasmon Resonance Scattering and Absorption of Anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer,” Nano Lett., Vol.5, No.5, pp. 829-834, 2005.
  4. [4] H. J. Chen, X. S. Kou, Z. Yang, W. H. Ni, and J. F. Wang, “Shapeand Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles,” Langmuir, Vol.24, No.10, pp. 5233-5237, 2008.
  5. [5] X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold Nanoparticles: Interesting Optical Properties and Recent Applications in Cancer Diagnostics and Therapy,” Nanomedicine, Vol.2, No.5, pp. 681-693, 2007.
  6. [6] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” J. Phys. Chem. B, Vol.110, No.14, pp. 7238-7248, 2006.
  7. [7] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, Vol.107, No.3, pp. 668-677, 2003.
  8. [8] J. Yguerabide and E. E. Yguerabide, “Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications,” Anal. Biochem., Vol.262, No.2, pp. 137-156, 1998.
  9. [9] X. H. Huang, I. H. El-Sayed,W. Qian, andM. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc., Vol.128, No.6, pp. 2115-2120, 2006.
  10. [10] M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. L. Zou, P. Mulvaney, Y. N. Xia, and G. V. Hartland, “Dark-Field Microscopy Studies of Single Metal Nanoparticles: Understanding the Factors that Influence the Linewidth of the Localized Surface Plasmon Resonance,” J. Mater. Chem., Vol.18, pp. 1949-1960, 2008.
  11. [11] L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, and R. P. Van Duyne, “Advances in Localized Surface Plasmon Resonance Spectroscopy Biosensing,” Nanomedicine, Vol.6, No.8, pp. 1447-1462, 2011.
  12. [12] A. J. Haes and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles,” J. Am. Chem. Soc., Vol.124, No.35, pp. 10596-10604, 2002.
  13. [13] K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annual Review of Physical Chemistry, Vol.58, pp. 267-297, 2007.
  14. [14] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with Plasmonic Nanosensors,” Nature Materials, Vol.7, No.6, pp. 442-453, 2008.
  15. [15] D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal Tumor Ablation in Mice Using Near Infrared-Absorbing Nanoparticles,” Cancer Lett., Vol.209, No.2, pp. 171-176.
  16. [16] E. Moulin, L. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, and H. Stiebig, “Thin-film Silicon Solar Cells with Integrated Silver Nanoparticles,” Thin Solid Films, Vol.516, No.20, pp. 6813-6817, 2008.
  17. [17] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of Sub-25 nm Vias and Trenches in Polymers,” Appl. Phys. Lett., Vol.67, No.21, pp. 3114-3116, 1995.
  18. [18] C. H. Yao, H. Y. Hsiung, and C. K. Sung, “Influences of Process Parameters and Mold Geometry on Direct Nanoimprint,” Microelectronic Engineering, Vol.86, No.4-6, pp. 665-668, 2009.
  19. [19] T. Akahane, M. Huda, T. Tamura, Y. Yin, and S. Hosaka, “Orientation-Controlled and Long-Range-Ordered Self-Assembled Nanodot Array for Ultrahigh-Density Bit-Patterned Media,” Japanese J. of Applied Physics, Vol.50, pp. 06GG01-06GG04, 2011.
  20. [20] S. Strobel, C. Kirkendall, J. B. Chang, and K. K. Berggren, “Sub-10 nm Structures on Silicon by Thermal Dewetting of Platinum,” Nanotechnology, Vol.21, No.50, 505301, pp. 1-7, 2010.
  21. [21] M. Yoshino, H. Ohsawa, and A. Yamanaka, “Rapid Fabrication of an Ordered Nano-Dot Array by the Combination of Nano-Plastic Forming and Annealing Methods,” J. Micromech. Microeng., Vol.21, 125017, pp. 1-9, 2011.
  22. [22] T. D. Phuc, A. Yamanaka, and M. Yoshino, “Study on Nano Dots Formation by Thermal Dewetting and Transfer to Plastic Films,” Proc. of Conf. of the Japan Society for Precision Engineering, (JSPE 2012).
  23. [23] T. D. Phuc, A. Yamanaka, and M. Yoshino, “High Throughput Method to Fabricate Ordered Nanodot array on Various Plastic Films,” J. of Key Engineering Materials, Vol.523-524, pp. 633-638, 2012.
  24. [24] T. D. Phuc, M. Yoshino, A. Yamanaka, and T. Yamamoto, “Fabrication of Gold Nanodots on Plastic Films for Bio-sensing,” Procedia CIRP, Vol.5, pp. 47-52, 2013.
  25. [25] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, Vol.107, No.3, pp. 668-677, 2003.
  26. [26] D. M. Ilanit, B. Zahava, F. G. Neta, V. Alexandre, and R. Israel, “Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties,” Chem. Mater., Vol.16, No.18, pp. 3476-3483, 2004.
  27. [27] K. Tanya, H. Devora, G. Mila, V. Alexander, and R. Israel, “Morphology and Refractive Index Sensitivity of Gold Island Films,” Chem. Mater., Vol.21, No.24, pp. 5875-5885, 2009.
  28. [28] X. M. Zhang, J. H. Zhang, H. Wang, Y. D. Hao, X. Zhang, T. Q. Wang, Y. N. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-Induced Surface Plasmon Band Shift of Gold Nanoparticle Monolayer: Morphology and Refractive Index Sensitivity,” Nanotechnology, Vol.21, 465702, pp. 1-11, 2010.
  29. [29] H. J. Chen, L. Shao, K. C. Woo, T. Ming, H. Q. Lin, and J. F. Wang, “Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals with the Same Plasmon Resonance Wavelength,” J. Phys. Chem. C, Vol.113, No.41, pp. 17691-17697, 2009.
  30. [30] B. T. Alexander, C. Lev, K. Tanya, A. B. Tatyana, H. Gilad, V. Alexander, and R. Israel, “Tunable Localized Plasmon Transducers Prepared by Thermal Dewetting of Percolated Evaporated Gold Films,” J. Phys. Chem. C, Vol.115, No.50, pp. 24642-24652, 2011.
  31. [31] H. T. Sun, M. P. Yu, G. K.Wang, X. Sun, and J. Lian, “Temperature-Dependent Morphology Evolution and Surface Plasmon Absorption of Ultrathin Gold Island Films,” J. Phys. Chem. C, Vol.116, No.16, pp. 9000-9008, 2012.
  32. [32] R. P. Anantatmula, A. A. Johnson, S. P. Gupta, and R. J. Horylev, “The gold-silicon phase diagram,” J. of Electronic Materials, Vol.4, No.3, pp. 445-463, 1975.
  33. [33] H. Okamoto and T. B. Massalski, “The Au-Si (Gold-Silicon) system,” Bulletin of Alloy Phase Diagrams, Vol.4, No.2, pp. 190-198, 1983
  34. [34] S. Xun, X. Song, L.Wang, M. E. Grass, Z. Liu, V. S. Battaglia, and G. Liu, “The Effects of Native Oxide Surface Layer on the Electrochemical Performance of Si Nanoparticle-Based Electrodes,” J. of The Electrochemical Society, Vol.158, Issue 12, pp. 1260-1266, 2011.
  35. [35] T. Miura, M. Niwano, D. Shoji, and N. Miyamoto, “Kinetics of oxidation on hydrogen-terminated Si(100) and (111) surfaces stored in air,” J. Appl. Phys., Vol.79, 4373, 1996.
  36. [36] R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc., Vol.110, No.6, pp. 524-527, 1963.
  37. [37] Y. K. Shchipalov, “Surface Energy of Crystalline and Vitreous Silica,” Glass and Ceramics, Vol.57, No.11-12, pp. 8-11, 2000.
  38. [38] B. Kim, S. L. Tripp, and A. Wei, “Self-Organization of Large Gold Nanoparticle Arrays,” J. Am. Chem. Soc., Vol.123, Issue 32, pp. 7955-7956, 2001.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 09, 2024