single-au.php

IJAT Vol.7 No.6 pp. 720-725
doi: 10.20965/ijat.2013.p0720
(2013)

Paper:

Fabrication of Titanium-Based Hard Coatings by Atmospheric Microplasma-Metal Organic Chemical Vapor Deposition Using Titanium Tetraisopropoxide

Tsunehisa Suzuki*, Mutsuto Kato*, and Yoshiki Shimizu**

*Yamagata Research Institute of Technology, 2-2-1 Matsuei, Yamagata 990-2473, Japan

**National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8561, Japan

Received:
April 10, 2013
Accepted:
September 20, 2013
Published:
November 5, 2013
Keywords:
titanium-based hard coatings, atmospheric microplasma, MOCVD, titanium (IV) tetraisopropoxide
Abstract
The atmospheric microplasma metal organic chemical vapor deposition (AP-MOCVD) using titanium (IV) tetraisopropoxide (TTIP) as a metal alkoxide titanium source was investigated for depositing TiC and TiN hard coatings on stainless steel rods for improving the tool life of electroplated diamond tools. The components and morphology of the coating deposited by microplasma AP-MOCVD with several gas sources and different processes was observed and analyzed. The titanium-based hard coatings composed of TiC, TiN, and TiO2 was successfully obtained by microplasma AP-MOCVD using TTIP as a metal alkoxide titanium source with mixed gases (CH4, N2, H2, and Ar). For the fabrication of titanium-based coatings (TiC, TiN) by microplasma AP-MOCVD, it is important that the carbon and oxygen content, which are components of TTIP, are reduced. The addition of hydrogen gas in the microplasma AP-MOCVD process, followed by nitriding effectively reduces the carbon and oxygen content in the coating.
Cite this article as:
T. Suzuki, M. Kato, and Y. Shimizu, “Fabrication of Titanium-Based Hard Coatings by Atmospheric Microplasma-Metal Organic Chemical Vapor Deposition Using Titanium Tetraisopropoxide,” Int. J. Automation Technol., Vol.7 No.6, pp. 720-725, 2013.
Data files:
References
  1. [1] E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. C. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Annals – Manufacturing Technology, Vol.59, pp. 652-671, 2010.
  2. [2] M. Aziz, O. Ohnishi, and H. Onikura, “Innovative micro hole machining with minimum burr formation by the use of newly developed micro compound tool,” Journal of Manufacturing Processes, Vol.14, pp. 224-232, 2012.
  3. [3] K. Shimada, T. Tateishi, N. Yoshihara, J. Yan, and T. Kuriyagawa, “Ultrasonic-assisted micro-grinding with electroplated diamond wheels,” Journal of the Japan Society of Grinding Engineers, Vol.53, pp. 45-48, 2009.
  4. [4] K. Shimada, T. Tateishi, N. Yoshihara, J. Yan, and T. Kuriyagawa, “Ultrasonic-assisted micro-grinding using electroplated diamond wheels 2nd Report: Effect of ultrasonic vibration on workpiece removal in grinding with wheel end,” Journal of the Japan Society for Abrasive Technology, Vol.54, pp. 37-40, 2010.
  5. [5] C. R. Lin and C. T. Kuo, “Improvement of mechanical properties of electroplated diamond tools by microwave plasma CVD diamond process,” Surface and Coatings Technology, Vol.110, pp. 19-23, 1998.
  6. [6] W. de Resende, E. J. Corat, V. J. Trava-Airoldi, and Né. F. Leite, “Multi-layer structure for chemical vapor deposition diamond on electroplated diamond tools,” Diamond and Related Materials, Vol.10, pp. 332-336, 2001.
  7. [7] Y. Shimizu, T. Sasaki, C. H. Liang, A. C. Bose, T. Ito, K. Terashima, and N. Koshizaki, “Cylindrical metal wire surface coating with multi-walled carbon nanotubes by an atmospheric-pressure microplasma CVD technique,” Chemical Vapor Deposition, Vol.11, pp. 244-249, 2005.
  8. [8] Y. Shimizu, A. C. Bose, D. Mariotti, T. Sasaki, K. Kirihara, T. Suzuki, K. Terashima, and N. Koshizaki, “Reactive Evaporation of Metal Wire and Microdeposition of Metal Oxide Using Atmospheric Pressure Reactive Microplasma Jet,” Jap. J. Appl. Phys., Vol.45, pp. 8228-8234, 2006.
  9. [9] Y. Shimizu, T. Sasaki, A. C. Bose, K. Terashima, and N. Koshizaki, “Development of wire spraying for direct micro-patterning via an atmospheric-pressure UHF inductively coupled microplasma jet,” Surface and Coatings Technology, Vol.200, pp. 4251-4256, 2006.
  10. [10] T. Tomai, K. Katahira, H. Kubo, Y. Shimizu, T. Sasaki, N. Koshizaki, and K. Terashima, “Carbon materials syntheses using dielectric barrier discharge microplasma in supercritical carbon dioxide environments,” The Journal of Supercritical Fluids, Vol.41, pp. 404-411, 2007.
  11. [11] H. O. Pierson, “4-Metallo-Organic CVD (MOCVD),” Handbook of Chemical Vapor Deposition (CVD) (Second Edition), William Andrew Publishing, Norwich, NY, pp. 84-107, 1999.
  12. [12] V. Gauthier, S. Bourgeois, P. Sibillot, M. Maglione, and M. Sacilotti, “Growth and characterization of AP-MOCVD iron doped titanium dioxide thin films,” Thin Solid Films, Vol.340, pp. 175-182, 1999.
  13. [13] F.-D. Duminica, F. Maury, and F. Senocq, “Atmospheric pressure MOCVD of TiO2 thin films using various reactive gas mixtures,” Surface and Coatings Technology, Vol.188-189, pp. 255-259, 2004.
  14. [14] S. Mathur and P. Kuhn, “CVD of titanium oxide coatings: Comparative evaluation of thermal and plasma assisted processes,” Surface and Coatings Technology, Vol.201, pp. 807-814, 2006.
  15. [15] C. Jiménez, D. De Barros, A. Darraz, J.-L. Deschanvres, L. Rapenne, P. Chaudouët, J. E. Méndez, F. Weiss, M. Thomachot, T. Sindzingre, G. Berthomé, and F. J. Ferrer, “Deposition of TiO2 thin films by atmospheric plasma post-discharge assisted injection MOCVD,” Surface and Coatings Technology, Vol.201, pp. 8971-8975, 2007.
  16. [16] F.-D. Duminica, F. Maury, and R. Hausbrand, “N-doped TiO2 coatings grown by atmospheric pressure MOCVD for visible lightinduced photocatalytic activity,” Surface and Coatings Technology, Vol.201, pp. 9349-9353, 2007.
  17. [17] F.-D. Duminica, F. Maury, and R. Hausbrand, “Growth of TiO2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications,” Surface and Coatings Technology, Vol.201, pp. 9304-9308, 2007.
  18. [18] E. Galvanetto, F. P. Galliano, F. Borgioli, U. Bardi, and A. Lavacchi, “XRD and XPS study on reactive plasma sprayed titaniumtitanium nitride coatings,” Thin Solid Films, Vol.384, pp. 223-229, 2001.
  19. [19] N. Jiang, H. J. Zhang, S. N. Bao, Y. G. Shen, and Z. F. Zhou, “XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias,” Physica B, Vol.352, pp. 118-126, 2004.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 19, 2024