IJAT Vol.7 No.2 pp. 211-220
doi: 10.20965/ijat.2013.p0211


Laser-Generated Surface Acoustic Wave Technique for Crack Monitoring – A Review

Kun Chen, Xing Fu, Dante J. Dorantes-Gonzalez,
Yanning Li, Sen Wu, and Xiaotang Hu

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, No.92, Weijin Road, Tianjin 300072, P.R. China

January 6, 2013
February 20, 2013
March 5, 2013
surface acoustic wave, laser-generated, crack monitoring, quantitative detection
In this paper, the principle of surface acoustic wave techniques and their application to the monitoring of cracks are presented and compared to other classic non-destructive techniques. A practical classification of methods regarding the excitation and detection of surface acoustic waves is enumerated, among them, laser-generated surface acoustic wave technique is carefully analyzed as a prospective technique, and two important detection methods using piezoelectric and light deflection are described. Then, the strategies and variables used in crack monitoring based on laser-generated surface acoustic wave technique are reviewed. To achieve the goal of quantitative detection of cracks, most researchers use numerical models and experiments to characterize main crack features. Discussions and prospective approaches for further quantitative monitoring of cracks are provided.
Cite this article as:
K. Chen, X. Fu, D. Dorantes-Gonzalez, Y. Li, S. Wu, and X. Hu, “Laser-Generated Surface Acoustic Wave Technique for Crack Monitoring – A Review,” Int. J. Automation Technol., Vol.7 No.2, pp. 211-220, 2013.
Data files:
  1. [1] S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS),” Acta. Mater, Vol.48, pp. 179-196, 2000.
  2. [2] Y. Tarui, T. Hirai, K. Teramoto, H. Koike, and K. Nagashima, “Application of the ferroelectric materials to ULSI memories,” Appl. Surf. Sci., Vol.113, pp. 656-663, 1997.
  3. [3] B. Bhushan, “Handbook of Micro/Nano Tribology,” CRC Press, Boca Raton, FL, 1999.
  4. [4] T. E. Matikas, “Damage Characterization and Real-Time Health Monitoring of Aerospace Materials Using Innovative NDE Tools,” J. of Materials Engineering and Performance, Vol.19, pp. 751-760, 2010.
  5. [5] L. M. Dong, J. Li, C. Y. Ni, Z. H. Shen, X. W. Ni, J. P. Chen, N. Chigarev, V. Tournat, and V. Gusev, “Crack Detection of Engine Blade Based on Laser-Heating Assisted Surface Acoustic Waves Generated by Scanning Laser,” Chinese J. of Lasers, Vol.38, pp. 1103001.1-1103001.5, 2011.
  6. [6] S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Nonlinear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestructive Testing and Evaluation, Vol.23, pp. 25-34, 2008.
  7. [7] K. Y. Jhang, “Nonlinear Ultrasonic Techniques for Nondestructive Assessment ofMicro Damage inMaterial: A Review,” Int. J. of Precision Engineering and Manufacturing, Vol.10, pp. 123-135, Jan. 2009.
  8. [8] E. R. Green Jr., “Non-contact ultrasonic techniques,” Ultrasonics, Vol.42, pp. 9-16, 2004.
  9. [9] C. Louis, “Nondestructive testing: radiography, ultrasonics, liquid penetrant, magnetic particle, eddy current,” ASM Int., 1995.
  10. [10] C. Hellier, “Handbook of Nondestructive Evaluation,” McGraw-Hill, 2003.
  11. [11] J. Z. Xia, “Nondestructive testing: An Introduction,” Guangzhou, Zhongshan University Press, 2010.
  12. [12] Z. X. Zheng, “Nondestructive Inspection and Safety Assessment,” Beijing, Standards Press of China, 2004.
  13. [13] S. Vanlanduit, P. Guillaume, and G. V. D. Linden, “On-line monitoring of fatigue cracks using ultrasonic surface waves,” NDT&E Int., Vol.36, pp. 601-607, 2003.
  14. [14] A. A. Olinered, “Acoustic Surface Waves,” Springer Verlag, Berlin, Heidelberg, New York, 1978.
  15. [15] J. L. Rose, “Ultrasonic Waves in Solid Media,” Beijing, Science Verlag, 2004.
  16. [16] H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminum,” J. Acoust. Soc. Am., Vol.65, pp. 840-842, 1979.
  17. [17] A. M. Aindow, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Laser-generated ultrasonic pulses at free metal surfaces,” J. Acoust. Soc. Am., Vol.69, pp. 449-455, 1981.
  18. [18] H. Ollendorf, D. Schneider, T. Schwarz, and A. Mucha, “Nondestructive evaluation of TiN films with interface defects by surface acoustic waves,” Surface and Coatings Technology, Vol.74-75, pp. 246-252, 1995.
  19. [19] H. Sato, S. Nakano, H. Ogiso, and K. Yamanaka, “Evaluation of Standard Defects Using Surface Acoustic Waves Generated by Phase Velocity Scanning of Laser Interference Fringes,” Jpn. J. Appl. Phys., Vol.36, pp. 3267-3269, 1997.
  20. [20] K. E.-A., V. D. Abeelea, A. Sutinb, J. Carmelietc, and P. A. Johnson, “Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS),” NDT&E Int., Vol.34, pp. 239-248, 2001.
  21. [21] S. I. Rokhlin, J.-Y. Kim, B. Xie, and B. Zoofan, “Nondestructive sizing and localization of internal microcracks in fatigue samples,” NDT&E Int., Vol.40, pp. 462-470, 2007.
  22. [22] J. F. Guan, “Mechanisms of laser generated surface acoustic wave and its application in the surface defect inspection,” Nanjing University of Science and Technique, 2006.
  23. [23] M. S. Bai, X. Fu, D. Dorantes, B. Y. Jin, and X. T. Hu, “A novel light deflection detecting technology applied in laser-generated ultrasonic detection,” Transducer and Microsystem Technologies, Vol.30, pp. 50-55, 2011.
  24. [24] M. S. Bai, X. Fu, D. Dorantes, B. Y. Jin, and X. T. Hu, “A Differential Confocal LG/LD SAW Detection System to Determine Mechanical Properties of Layered Thin Films,” Int. J. of Nanomanufacturing, Vol.7, pp. 311-326, 2011.
  25. [25] M. S. Bai, X. Fu, D. Dorantes, B. Y. Jin, and X. T. Hu, “Young’s modulus determination of low-k porous films by wideband DCC/LD SAW,” J. of Semiconductors, Vol.32, pp. 103003-6, 2011.
  26. [26] R. F. Milsom, N. H. C. Reilly, and M. Redwood, “Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers,” IEEE Trans. on Sonics and Ultrasonics, Vol.24, pp. 147-166, 1977.
  27. [27] G. G. Zhang, “Nanostructure-Enhanced Surface AcousticWaves Biosensor and Its ComputationalModeling,” J. of Sensors, Vol.2009, pp. 1-11, 2009.
  28. [28] A. A. Nassar, “Excitation of surface waves with piezoelectric layers,” Department of Electrical Engineering, McGill University, Montreal, Canada, 1983.
  29. [29] S. R. Ponamgi and H. S. Tuan, “Excitation of surface elastic waves in a piezoelectric layered structure,” J. Acoust. Soc. Am., Vol.57, pp. 338-346, 1975.
  30. [30] R. S. Edwards, S. Dixon, and X. Jian, “Enhancement of the Rayleigh wave signal at surface defects,” J. Phys. D: Appl. Phys, Vol.37, pp. 2291-2297, 2004.
  31. [31] H. Frost, “Electromagnetic-ultrasound transducers: principles, practice and applications,” Academic Press, New York, W. P. Mason, R. N. Thurston (Eds.), Physical Acoustics XIV, pp. 179-275, 1979.
  32. [32] Z. M. Lu, D. Dorantes, K. Chen, F. Yang, B. Y. Jin, Y. N. Li, Z. Chen, and X. T. Hu, “A Four-Quadrant PVDF Transducer for Surface Acoustic,” sensors, Vol.12, pp. 10500-10510, 2012.
  33. [33] R. J. Dewhurst, S. Boonsang, and P. R. Murray, “Alaserultrasound/EMAT imaging system for near surface examination of defects,” Springer-Verlag Berlin, Nondestructive Characterization of Materials Xi, Proc. of the Int. Symp., pp. 13-19, 2003.
  34. [34] H. M. Frost, J. C. Sethares, and T. L. Szabo, “Rotation sensing through electromagnetic surface acoustic wave transduction,” J. Appl. Phys., Vol.48, pp. 52-58, 1977.
  35. [35] A. Murray, E. S. Boltz, M. Renken, C. M. Fortunko, M. F. Mecklenburg, and R. E. Green Jr., “Air-coupled ultrasonic system for characterizing the structural stabilityof wooden panel paintings,” Plenum Press, New York, Nondestructive Characterization of Material VII, pp. 103-110, 1994.
  36. [36] A. Murray, M. F. Mecklenburg, C. M. Fortunko, and R. E. Green Jr., “Air-coupled ultrasonic system: a new technology for detecting flaws in paintings on wooden panels,” J. Am. Inst. Conserv., Vol.35, pp. 145-162, 1996.
  37. [37] R. J. Dewhurst, C. E. Edwards, A. D. W. Mckie, and S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics, Vol.25, pp. 315-321, 1987.
  38. [38] R.M.White, “Generation of elastic waves by transient surface heating,” J. Appl. Phys., Vol.34, pp. 3559-3567, 1963.
  39. [39] S. Kitazawa, T. Y. S. P. Putra, S. Sakai, K. Narumi, H. Naramoto, S. Yamamoto, and A. Chiba, “Laser detection of surface acoustic waves as a method of measuring an Ar ion beam modification of carbon thin film,” Nucl. Instr. and Meth. in Phys. Res. B, Vol.206, pp. 952-955, 2003.
  40. [40] D. C. Hurley, V. K. Tewary, and A. J. Richards, “Thin-film elasticproperty measurements with laser-ultrasonic SAW spectrometry,” Thin Solid Films, Vol.398-399, pp. 326-330, 2001.
  41. [41] D. Schneider, T. Schwarz, A. S. Bradford, Q. Shan, and R. J. Dewhurst, “Controlling the quality of thin films by surface acoustic waves,” Ultrasonics, Vol.35, pp. 345-356, 1997.
  42. [42] R. Nuster, H. Gruen, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry Perot interferometer for acoustic wave monitoring in photoacoustic tomography,” OPTICS LETTERS, Vol.36, pp. 981-983, 2011.
  43. [43] J. H. Kim, H. S. Kim, E. D. Sim, and K. Kim, “Filter-free wavelength conversion using mach-zehnder interferometer with integrated multimode interference semiconductor optical amplifiers,” ETRI J., Vol.26, pp. 344-350, 2004.
  44. [44] R. Longo, S. Vanlanduit, J. Vanherzeele, and P. Guillaume, “A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves,” Ultrasonics, Vol.50, pp. 76-80, 2010.
  45. [45] A. Alippi, A. Palma, L. Palmieri, and G. Socino, “Acoustooptic interaction for most effective deflection of unguided light via acoustic surface waves,” Appl. Opt., Vol.15, pp. 2400-2404, 1976.
  46. [46] D. Schneider, T. Schwarz, H.-J. Scheibe, and M. Panzner, “Nondestructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves,” Thin Solid Films, Vol.295, pp. 107-116, 1997.
  47. [47] R. Kuschnereit, H. Fath, A. A. Kolomenskii, M. Szabadi, and P. Hess, “Mechanical and elastic properties of amorphous hydrogenated silicon films studied by broadband surface acoustic wave spectroscopy,” Appl. Phys., Vol.A61, pp. 269-276, 1995.
  48. [48] F. Yang, D. Dorantes, K. Chen, Z. M. Lu, B. Y. Jin, Y. N. Li, Z. Chen, and X. T. Hu, “An Integrated Laser-induced PZT/DC SAW System for Thin Film Young’s Modulus Measurement,” Sensors, Vol.12, pp. 12208-12219, 2012.
  49. [49] Y. Matsuda, H. Nakano, S. Nagai, and H. Hiratsuka, “Surface breaking crack evaluation with photorefractive quantum wells and laser-generated Rayleigh waves,” Applied Physics Letters, Vol.89, pp. 171902-1, 2006.
  50. [50] J. L. Blackshire and A. Modic, “Surface-breaking Crack Depth Assessment Using Near-field Surface Acoustic Signal Response,” Review of Progress in Quantitative Nondestructive Evaluation, AIP Conf. Proc, Vol.30, pp. 681-688, 2011.
  51. [51] J.-Y. Kim, V. A. Yakovlev, and S. I. Rokhlina, “Surface acoustic wave modulation on a partially closed fatigue crack,” J. Acoust. Soc. Am., Vol.115, pp. 1961-1973, 2004.
  52. [52] J.-Y. Kim, V. A. Yakovlev, and S. I. Rokhlina, “Parametric modulation mechanism of surface acoustic wave on a partially closed crack,” Applied Physics Letters, Vol.82, pp. 3203, 2003.
  53. [53] D. Paehler and D. Schneider, “Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics,” Microelectronic Engineering, Vol.84, pp. 340-354, 2007.
  54. [54] D. Cerniglia, B. B. Djordjevic, and V. Nigrelli, “Quantitative Subsurface Defect Detection in Composite Materials Using a Non-contact Ultrasonic System,” IEEE ULTRASONICS SYMP., pp. 751-754, 2001.
  55. [55] B. Dutton, A. R. Clough, and R. S. Edwards, “Near Field Enhancements from Angled Surface Defects: A Comparison of Scanning Laser Source and Scanning Laser Detection Techniques,” J. Nondestruct Eval., Vol.30, pp. 64-70, 2011.
  56. [56] B. Lin, L. Zhang, D. Dorantes, Y. N. Li, X. Fu, and X. T. Hu, “Numerical Simulation of Surface Acoustic Waves and Detection of Surface Cracks in Steel,” Trans. of Tianjin University, Vol.17, pp. 254-258, 2011.
  57. [57] I. A. Viktorov, “Rayleigh and Lamb Waves: Physical theory and applications,” New York, Plenum Press, 1967.
  58. [58] B. R. Tittmann, F. Cohen- Tenoudji, M. Billy, A. Jungman, and G. Quentin, “A simple approach to estimate the size of small surface cracks with the use of acoustic surface waves,” Appl. Phys. Lett., Vol.33, pp. 6-9, 1978.
  59. [59] V. Domarkas, B. T. Khuri-Yakub, and G. S. Kino, “Length and depth resonances of surface cracks and their use for crack size estimation,” Appl. phys. Lett., Vol.33, pp. 557-560, 1978.
  60. [60] H. S. Tuanand and R. C. M. Li, “Rayleigh-wave reflection from groove and step discontinuities,” J. Acoust. Soe. Am., Vol.55, pp. 1212-1217, 1974.
  61. [61] A. Donald and D. A. Simons, “Reflection of Rayleigh waves by strips, grooves, and periodic arrays of strips or grooves,” J. Acoust. Soe. Am., Vol.63, pp. 1292-1301, 1978.
  62. [62] A. K. Gautesen, J. D. Achenbach, and H.MeMaken, “Surface-wave rays in elastodynamic diffraction by cracks,” J. Acoust. Soc. Am., Vol.63, pp. 1824-1831, 1978.
  63. [63] M. Hirao, H. Fukuoka, and Y. Miura, “Scattering of Rayleigh surface waves by edge cracks: Numerical Simulation and experiment,” J. Acoust. Soc. Am., Vol.72, pp. 602-606, 1982.
  64. [64] L. J. Crane, M. D. Gilchrist, and J. J. H. Miller, “Analysis of Rayleigh-Lamb wave scattering by a crack in an elastic plate,” Comp. Mech., Vol.19, pp. 533-537, 1996.
  65. [65] A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE, Vol.4076, pp. 252-259, 2000.
  66. [66] A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Laser ultrasonic detection of surface breaking discontinuities: Scanning laser source technique,” Materials Evaluation, Vol.58, pp. 173-177, 2000.
  67. [67] I. Arias and J. D. Achenbach, “A Theoretical Model for the Ultrasonic Detection of Surface-Breaking Cracks with the Scanning Laser Source Technique,” Review of Progress in Quantitative Nondestructive Evaluation, Vol.22, pp. 281-288, 2003.
  68. [68] M. Ochiai, “Laser-induced surface acoustic wave technique for precise depth measurement of stress corrosion cracking,” J. of Physics: Conf. Series, Vol.278, pp. 012009.1-6, 2011.
  69. [69] A. Cooney and J. L. Blackshire, “Characterization Of Microscopic Surface Breaking Cracks Using the Near-Field Intensification Of Non-Destructive Laser Generated Surface Waves,” Proc. of SPIE, Vol.5392, pp. 158-167, 2004.
  70. [70] D. O. Thompson and R. B. Thompson, “Review of Developments in Quantitatve Ultrasonic NDE,” J. de Physique Colloques, Vol.46, pp. C10-835-C10-846, 1985.
  71. [71] D. Donskoy, A. Sutin, and A. Ekimov, “Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing,” NDT&E Int., Vol.34, pp. 231-238, 2001.
  72. [72] G. D. Connolly and S. I. Rokhlin, “Quantitative Enhancement of Fatigue Crack Monitoring by Imaging Surface Acoustic Wave Reflection in a Space-cycle-load Domain,” Review of Progress in Quantitative Nondestructive Evaluation, AIP Conf. Proc., Vol.30, pp. 1499-1506, 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 01, 2024