Review:
Laser-Generated Surface Acoustic Wave Technique for Crack Monitoring – A Review
Kun Chen, Xing Fu, Dante J. Dorantes-Gonzalez,
Yanning Li, Sen Wu, and Xiaotang Hu
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, No.92, Weijin Road, Tianjin 300072, P.R. China
- [1] S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS),” Acta. Mater, Vol.48, pp. 179-196, 2000.
- [2] Y. Tarui, T. Hirai, K. Teramoto, H. Koike, and K. Nagashima, “Application of the ferroelectric materials to ULSI memories,” Appl. Surf. Sci., Vol.113, pp. 656-663, 1997.
- [3] B. Bhushan, “Handbook of Micro/Nano Tribology,” CRC Press, Boca Raton, FL, 1999.
- [4] T. E. Matikas, “Damage Characterization and Real-Time Health Monitoring of Aerospace Materials Using Innovative NDE Tools,” J. of Materials Engineering and Performance, Vol.19, pp. 751-760, 2010.
- [5] L. M. Dong, J. Li, C. Y. Ni, Z. H. Shen, X. W. Ni, J. P. Chen, N. Chigarev, V. Tournat, and V. Gusev, “Crack Detection of Engine Blade Based on Laser-Heating Assisted Surface Acoustic Waves Generated by Scanning Laser,” Chinese J. of Lasers, Vol.38, pp. 1103001.1-1103001.5, 2011.
- [6] S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Nonlinear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestructive Testing and Evaluation, Vol.23, pp. 25-34, 2008.
- [7] K. Y. Jhang, “Nonlinear Ultrasonic Techniques for Nondestructive Assessment ofMicro Damage inMaterial: A Review,” Int. J. of Precision Engineering and Manufacturing, Vol.10, pp. 123-135, Jan. 2009.
- [8] E. R. Green Jr., “Non-contact ultrasonic techniques,” Ultrasonics, Vol.42, pp. 9-16, 2004.
- [9] C. Louis, “Nondestructive testing: radiography, ultrasonics, liquid penetrant, magnetic particle, eddy current,” ASM Int., 1995.
- [10] C. Hellier, “Handbook of Nondestructive Evaluation,” McGraw-Hill, 2003.
- [11] J. Z. Xia, “Nondestructive testing: An Introduction,” Guangzhou, Zhongshan University Press, 2010.
- [12] Z. X. Zheng, “Nondestructive Inspection and Safety Assessment,” Beijing, Standards Press of China, 2004.
- [13] S. Vanlanduit, P. Guillaume, and G. V. D. Linden, “On-line monitoring of fatigue cracks using ultrasonic surface waves,” NDT&E Int., Vol.36, pp. 601-607, 2003.
- [14] A. A. Olinered, “Acoustic Surface Waves,” Springer Verlag, Berlin, Heidelberg, New York, 1978.
- [15] J. L. Rose, “Ultrasonic Waves in Solid Media,” Beijing, Science Verlag, 2004.
- [16] H. M. Ledbetter and J. C. Moulder, “Laser-induced Rayleigh waves in aluminum,” J. Acoust. Soc. Am., Vol.65, pp. 840-842, 1979.
- [17] A. M. Aindow, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Laser-generated ultrasonic pulses at free metal surfaces,” J. Acoust. Soc. Am., Vol.69, pp. 449-455, 1981.
- [18] H. Ollendorf, D. Schneider, T. Schwarz, and A. Mucha, “Nondestructive evaluation of TiN films with interface defects by surface acoustic waves,” Surface and Coatings Technology, Vol.74-75, pp. 246-252, 1995.
- [19] H. Sato, S. Nakano, H. Ogiso, and K. Yamanaka, “Evaluation of Standard Defects Using Surface Acoustic Waves Generated by Phase Velocity Scanning of Laser Interference Fringes,” Jpn. J. Appl. Phys., Vol.36, pp. 3267-3269, 1997.
- [20] K. E.-A., V. D. Abeelea, A. Sutinb, J. Carmelietc, and P. A. Johnson, “Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS),” NDT&E Int., Vol.34, pp. 239-248, 2001.
- [21] S. I. Rokhlin, J.-Y. Kim, B. Xie, and B. Zoofan, “Nondestructive sizing and localization of internal microcracks in fatigue samples,” NDT&E Int., Vol.40, pp. 462-470, 2007.
- [22] J. F. Guan, “Mechanisms of laser generated surface acoustic wave and its application in the surface defect inspection,” Nanjing University of Science and Technique, 2006.
- [23] M. S. Bai, X. Fu, D. Dorantes, B. Y. Jin, and X. T. Hu, “A novel light deflection detecting technology applied in laser-generated ultrasonic detection,” Transducer and Microsystem Technologies, Vol.30, pp. 50-55, 2011.
- [24] M. S. Bai, X. Fu, D. Dorantes, B. Y. Jin, and X. T. Hu, “A Differential Confocal LG/LD SAW Detection System to Determine Mechanical Properties of Layered Thin Films,” Int. J. of Nanomanufacturing, Vol.7, pp. 311-326, 2011.
- [25] M. S. Bai, X. Fu, D. Dorantes, B. Y. Jin, and X. T. Hu, “Young’s modulus determination of low-k porous films by wideband DCC/LD SAW,” J. of Semiconductors, Vol.32, pp. 103003-6, 2011.
- [26] R. F. Milsom, N. H. C. Reilly, and M. Redwood, “Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers,” IEEE Trans. on Sonics and Ultrasonics, Vol.24, pp. 147-166, 1977.
- [27] G. G. Zhang, “Nanostructure-Enhanced Surface AcousticWaves Biosensor and Its ComputationalModeling,” J. of Sensors, Vol.2009, pp. 1-11, 2009.
- [28] A. A. Nassar, “Excitation of surface waves with piezoelectric layers,” Department of Electrical Engineering, McGill University, Montreal, Canada, 1983.
- [29] S. R. Ponamgi and H. S. Tuan, “Excitation of surface elastic waves in a piezoelectric layered structure,” J. Acoust. Soc. Am., Vol.57, pp. 338-346, 1975.
- [30] R. S. Edwards, S. Dixon, and X. Jian, “Enhancement of the Rayleigh wave signal at surface defects,” J. Phys. D: Appl. Phys, Vol.37, pp. 2291-2297, 2004.
- [31] H. Frost, “Electromagnetic-ultrasound transducers: principles, practice and applications,” Academic Press, New York, W. P. Mason, R. N. Thurston (Eds.), Physical Acoustics XIV, pp. 179-275, 1979.
- [32] Z. M. Lu, D. Dorantes, K. Chen, F. Yang, B. Y. Jin, Y. N. Li, Z. Chen, and X. T. Hu, “A Four-Quadrant PVDF Transducer for Surface Acoustic,” sensors, Vol.12, pp. 10500-10510, 2012.
- [33] R. J. Dewhurst, S. Boonsang, and P. R. Murray, “Alaserultrasound/EMAT imaging system for near surface examination of defects,” Springer-Verlag Berlin, Nondestructive Characterization of Materials Xi, Proc. of the Int. Symp., pp. 13-19, 2003.
- [34] H. M. Frost, J. C. Sethares, and T. L. Szabo, “Rotation sensing through electromagnetic surface acoustic wave transduction,” J. Appl. Phys., Vol.48, pp. 52-58, 1977.
- [35] A. Murray, E. S. Boltz, M. Renken, C. M. Fortunko, M. F. Mecklenburg, and R. E. Green Jr., “Air-coupled ultrasonic system for characterizing the structural stabilityof wooden panel paintings,” Plenum Press, New York, Nondestructive Characterization of Material VII, pp. 103-110, 1994.
- [36] A. Murray, M. F. Mecklenburg, C. M. Fortunko, and R. E. Green Jr., “Air-coupled ultrasonic system: a new technology for detecting flaws in paintings on wooden panels,” J. Am. Inst. Conserv., Vol.35, pp. 145-162, 1996.
- [37] R. J. Dewhurst, C. E. Edwards, A. D. W. Mckie, and S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics, Vol.25, pp. 315-321, 1987.
- [38] R.M.White, “Generation of elastic waves by transient surface heating,” J. Appl. Phys., Vol.34, pp. 3559-3567, 1963.
- [39] S. Kitazawa, T. Y. S. P. Putra, S. Sakai, K. Narumi, H. Naramoto, S. Yamamoto, and A. Chiba, “Laser detection of surface acoustic waves as a method of measuring an Ar ion beam modification of carbon thin film,” Nucl. Instr. and Meth. in Phys. Res. B, Vol.206, pp. 952-955, 2003.
- [40] D. C. Hurley, V. K. Tewary, and A. J. Richards, “Thin-film elasticproperty measurements with laser-ultrasonic SAW spectrometry,” Thin Solid Films, Vol.398-399, pp. 326-330, 2001.
- [41] D. Schneider, T. Schwarz, A. S. Bradford, Q. Shan, and R. J. Dewhurst, “Controlling the quality of thin films by surface acoustic waves,” Ultrasonics, Vol.35, pp. 345-356, 1997.
- [42] R. Nuster, H. Gruen, B. Reitinger, P. Burgholzer, S. Gratt, K. Passler, and G. Paltauf, “Downstream Fabry Perot interferometer for acoustic wave monitoring in photoacoustic tomography,” OPTICS LETTERS, Vol.36, pp. 981-983, 2011.
- [43] J. H. Kim, H. S. Kim, E. D. Sim, and K. Kim, “Filter-free wavelength conversion using mach-zehnder interferometer with integrated multimode interference semiconductor optical amplifiers,” ETRI J., Vol.26, pp. 344-350, 2004.
- [44] R. Longo, S. Vanlanduit, J. Vanherzeele, and P. Guillaume, “A method for crack sizing using Laser Doppler Vibrometer measurements of Surface Acoustic Waves,” Ultrasonics, Vol.50, pp. 76-80, 2010.
- [45] A. Alippi, A. Palma, L. Palmieri, and G. Socino, “Acoustooptic interaction for most effective deflection of unguided light via acoustic surface waves,” Appl. Opt., Vol.15, pp. 2400-2404, 1976.
- [46] D. Schneider, T. Schwarz, H.-J. Scheibe, and M. Panzner, “Nondestructive evaluation of diamond and diamond-like carbon films by laser induced surface acoustic waves,” Thin Solid Films, Vol.295, pp. 107-116, 1997.
- [47] R. Kuschnereit, H. Fath, A. A. Kolomenskii, M. Szabadi, and P. Hess, “Mechanical and elastic properties of amorphous hydrogenated silicon films studied by broadband surface acoustic wave spectroscopy,” Appl. Phys., Vol.A61, pp. 269-276, 1995.
- [48] F. Yang, D. Dorantes, K. Chen, Z. M. Lu, B. Y. Jin, Y. N. Li, Z. Chen, and X. T. Hu, “An Integrated Laser-induced PZT/DC SAW System for Thin Film Young’s Modulus Measurement,” Sensors, Vol.12, pp. 12208-12219, 2012.
- [49] Y. Matsuda, H. Nakano, S. Nagai, and H. Hiratsuka, “Surface breaking crack evaluation with photorefractive quantum wells and laser-generated Rayleigh waves,” Applied Physics Letters, Vol.89, pp. 171902-1, 2006.
- [50] J. L. Blackshire and A. Modic, “Surface-breaking Crack Depth Assessment Using Near-field Surface Acoustic Signal Response,” Review of Progress in Quantitative Nondestructive Evaluation, AIP Conf. Proc, Vol.30, pp. 681-688, 2011.
- [51] J.-Y. Kim, V. A. Yakovlev, and S. I. Rokhlina, “Surface acoustic wave modulation on a partially closed fatigue crack,” J. Acoust. Soc. Am., Vol.115, pp. 1961-1973, 2004.
- [52] J.-Y. Kim, V. A. Yakovlev, and S. I. Rokhlina, “Parametric modulation mechanism of surface acoustic wave on a partially closed crack,” Applied Physics Letters, Vol.82, pp. 3203, 2003.
- [53] D. Paehler and D. Schneider, “Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics,” Microelectronic Engineering, Vol.84, pp. 340-354, 2007.
- [54] D. Cerniglia, B. B. Djordjevic, and V. Nigrelli, “Quantitative Subsurface Defect Detection in Composite Materials Using a Non-contact Ultrasonic System,” IEEE ULTRASONICS SYMP., pp. 751-754, 2001.
- [55] B. Dutton, A. R. Clough, and R. S. Edwards, “Near Field Enhancements from Angled Surface Defects: A Comparison of Scanning Laser Source and Scanning Laser Detection Techniques,” J. Nondestruct Eval., Vol.30, pp. 64-70, 2011.
- [56] B. Lin, L. Zhang, D. Dorantes, Y. N. Li, X. Fu, and X. T. Hu, “Numerical Simulation of Surface Acoustic Waves and Detection of Surface Cracks in Steel,” Trans. of Tianjin University, Vol.17, pp. 254-258, 2011.
- [57] I. A. Viktorov, “Rayleigh and Lamb Waves: Physical theory and applications,” New York, Plenum Press, 1967.
- [58] B. R. Tittmann, F. Cohen- Tenoudji, M. Billy, A. Jungman, and G. Quentin, “A simple approach to estimate the size of small surface cracks with the use of acoustic surface waves,” Appl. Phys. Lett., Vol.33, pp. 6-9, 1978.
- [59] V. Domarkas, B. T. Khuri-Yakub, and G. S. Kino, “Length and depth resonances of surface cracks and their use for crack size estimation,” Appl. phys. Lett., Vol.33, pp. 557-560, 1978.
- [60] H. S. Tuanand and R. C. M. Li, “Rayleigh-wave reflection from groove and step discontinuities,” J. Acoust. Soe. Am., Vol.55, pp. 1212-1217, 1974.
- [61] A. Donald and D. A. Simons, “Reflection of Rayleigh waves by strips, grooves, and periodic arrays of strips or grooves,” J. Acoust. Soe. Am., Vol.63, pp. 1292-1301, 1978.
- [62] A. K. Gautesen, J. D. Achenbach, and H.MeMaken, “Surface-wave rays in elastodynamic diffraction by cracks,” J. Acoust. Soc. Am., Vol.63, pp. 1824-1831, 1978.
- [63] M. Hirao, H. Fukuoka, and Y. Miura, “Scattering of Rayleigh surface waves by edge cracks: Numerical Simulation and experiment,” J. Acoust. Soc. Am., Vol.72, pp. 602-606, 1982.
- [64] L. J. Crane, M. D. Gilchrist, and J. J. H. Miller, “Analysis of Rayleigh-Lamb wave scattering by a crack in an elastic plate,” Comp. Mech., Vol.19, pp. 533-537, 1996.
- [65] A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE, Vol.4076, pp. 252-259, 2000.
- [66] A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Laser ultrasonic detection of surface breaking discontinuities: Scanning laser source technique,” Materials Evaluation, Vol.58, pp. 173-177, 2000.
- [67] I. Arias and J. D. Achenbach, “A Theoretical Model for the Ultrasonic Detection of Surface-Breaking Cracks with the Scanning Laser Source Technique,” Review of Progress in Quantitative Nondestructive Evaluation, Vol.22, pp. 281-288, 2003.
- [68] M. Ochiai, “Laser-induced surface acoustic wave technique for precise depth measurement of stress corrosion cracking,” J. of Physics: Conf. Series, Vol.278, pp. 012009.1-6, 2011.
- [69] A. Cooney and J. L. Blackshire, “Characterization Of Microscopic Surface Breaking Cracks Using the Near-Field Intensification Of Non-Destructive Laser Generated Surface Waves,” Proc. of SPIE, Vol.5392, pp. 158-167, 2004.
- [70] D. O. Thompson and R. B. Thompson, “Review of Developments in Quantitatve Ultrasonic NDE,” J. de Physique Colloques, Vol.46, pp. C10-835-C10-846, 1985.
- [71] D. Donskoy, A. Sutin, and A. Ekimov, “Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing,” NDT&E Int., Vol.34, pp. 231-238, 2001.
- [72] G. D. Connolly and S. I. Rokhlin, “Quantitative Enhancement of Fatigue Crack Monitoring by Imaging Surface Acoustic Wave Reflection in a Space-cycle-load Domain,” Review of Progress in Quantitative Nondestructive Evaluation, AIP Conf. Proc., Vol.30, pp. 1499-1506, 2011.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.