Paper:
Contour Object Generation Method for Object Recognition Using FPGA
M. Peña-Cabrera*, V. Lomas-Barrie*, I. López-Juárez**,
and R. Osorio-Comparán*
*Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, México D.F., México
**CINVESTAV, Saltillo, Mexico
- [1] G. N. DeSouza and A. C. Kak, “A subsumptive hierarchical and distributed vision-based architecture for smart robotics,” IEEE trans. on Robotics and Automation, 2002.
- [2] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on Visual Servo Control,” IEEE Trans. on Robotics and Automation, Vol.12, No.5, Oct. 1996.
- [3] G. M. Bone and D. Capson, “Vision-guided fixtureless assembly of automotive components,” Pergamon, Elsevier Science LTD., Robotics and Computer Integrated Manufacturing, Vol.19, pp 79-87, 2003.
- [4] Y. Yoon, G. DeSouza, and A. Kak, “Realtime tracking and Pose estimation for industrial objects using geometric features,” Proc. of the 2003 IEEE Int. Conf. on Robotics Automation, Taipei, Taiwan, Sep. 14-19, pp. 3473-3478, 2003.
- [5] S. K. Miller, H. Christensen, and P. Allen, “Automatic grasp planning using shape primitives,” Proc. of the 2003 IEEE Int. Conf. on Robtics Automation, Taipei, Taiwa, Sep. 14-19, pp. 1824-1829, 2003.
- [6] E. Bribiesca, “A new Chain Code,” Pergamon, Pattern Recognition, Vol.32, pp. 235-251, 1999.
- [7] C. Yüceer and K. Oflazer, “A rotation, scaling and translation invariant pattern classification system,” Pattern Recognition, Vol.26, No.5 pp. 687-710, 1993.
- [8] C. S. Langley, “ART FCMAC: a memory efficient neural network for robotic pose estimation,” IEEE Proc. Int. Symp. on Computational Intelligence in Robotics and Automation, Vol.1, pp. 418-423.
- [9] A. Bicchi and V. Kumar, “Robotic Grasping and Manipulation,” Springer Verlag, In Ramsete: Articuated and Mobile Robots for Services and Technology, 2001.
- [10] Carpenter Gail A. and S. Grossberg, and J. H. Reynolds, “ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by Self-Organizing Neural Network,” Neural Networks, pp. 565-588, 1991.
- [11] P. K. Sahoo, S. Soltani, and A. K. C.Wong, “A survey of thresholding techniques,” Computer Vision, Graphics, and Image Processing, Vol.41, Issue 2, pp. 233-260, Feb. 1988, ISSN 0734-189X, 10.1016/0734-189X(88)90022-9.
- [12] T. Pun, “A new method for grey-level picture thresholding using the entropy of the histogram,” Signal Processing, Vol.2, Issue 3, pp. 223-237, Jul. 1980.
- [13] N. Ahuja and A. Rosenfeld, “A note on the use of second order gray-level statistics for threshold selection,” IEEE Trans Syst. Man Cybern SMC-8, 1978, pp 895-898.
- [14] M. Peña-Cabrera and I. Lopez-Juarezl, “A Learning Approach for On Line Object Recognition in Robotic Tasks,” Mexican Int. Conf. on Computer Science ENC, IEEE Computer Society Press, 2004.
- [15] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans. on Electronic Computers, pp. 330-334, Sep. 1959.
- [16] J. S. Walther, “The Story of Unified Cordic,” The J. of VLSI Signal Processing, Vol.25, No.2, pp. 107-112, 2000.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.