IJAT Vol.7 No.2 pp. 148-155
doi: 10.20965/ijat.2013.p0148


Positioning Characteristics of a MEMS Linear Motor Utilizing a Thin Film Permanent Magnet and DLC Coating

Ryogen Fujiwara*, Tadahiko Shinshi*, and Minoru Uehara**

*Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

**Hitachi Metals, Ltd., 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka 618-0013, Japan

December 10, 2012
January 13, 2013
March 5, 2013
electromagnetic actuator, linear motor, MEMS, thin film permanent magnet, positioning, DLC coating
A high performance Nd2Fe14B/Ta thin film Permanent Magnet (PM) not only has a high remnant flux density and a high coercive force similar to those of a conventional sintered Nd2Fe14B magnet, but also has a high heat tolerance. Using a thin film PM, we developed a moving-magnet typeMEMS linearmotor consisting of a silicon slider including a multi-pole magnetized thin film PM, a linear guideway made from silicon, and a two-phase micro-coil. Diamond-Like Carbon (DLC) coatings were used in order to reduce the friction force between the slider and the guideway. The purpose of this study is to realize feedback positioning of the MEMS linear motor and to investigate the dynamics of the linear motor system. In a driving experiment, the minimum current and voltage to start the slider were less than 0.26 A and 0.6 V, respectively. In positioning tests, the positioning resolution and bandwidth were 100 µm and 54 Hz, respectively.
Cite this article as:
R. Fujiwara, T. Shinshi, and M. Uehara, “Positioning Characteristics of a MEMS Linear Motor Utilizing a Thin Film Permanent Magnet and DLC Coating,” Int. J. Automation Technol., Vol.7 No.2, pp. 148-155, 2013.
Data files:
  1. [1] M. Esashi, H. Komatsu, T. Matsuo, M. Takahashi, T. Takishima, K. Imabayashi, and H. Ozawa, “Fabrication of catheter-tip and sidewall miniature pressure sensors,” IEEE Trans. on Electron Devices, Vol.29, No.1, pp. 57-63, 1982.
  2. [2] Z. Xiao, M. Chen, G. Wu, C. Zhao, D. Zhang, Y. Hao, G. Zhang, and Z. Li, “Silicon micro-accelerometer with mg resolution, high linearity and large frequency bandwidth fabricated with two mask bulk process,” Sensors and Actuators A: Physical, Vol.77, No.2, pp. 113-119, 1999.
  3. [3] T. Murakoshi, Y. Endo, K. Fukatsu, S. Nakamura, and M. Esashi, “Electrostatically Levitated Ring-Shaped Rotational-Gyro/Accelerometer,” Japanese J. of Applied Physics, Vol.42, No.4B, pp. 2468-2472. 2003.
  4. [4] D. W. Monk and R. O. Gale, “The digital micromirror device for projection display,” Microelectronic Engineering, Vol.27, No.1-4, pp. 489-493, 1995.
  5. [5] C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection microstereolithography using digital micro-mirror dynamic mask,” Sensors and Actuators A: Physical, Vol.121, No.1, pp. 113-120, 2005.
  6. [6] S. Towfighian, A. Seleim, E.M. Abdel-Rahman, and G. R. Heppler, “A large-stroke electrostatic micro-actuator,” J. of Micromechanics and Microengineering, Vol.21, No.7, 075023, 2011.
  7. [7] F. Hu1, W. Wang, and J. Yao, “An electrostatic MEMS spring actuator with large stroke and out-of-plane actuation,” J. of Micromechanics and Microengineering, Vol.21, No.11, 115029, 2011.
  8. [8] Y. T. Songa, H. Y. Leea, and M. Esashi, “A corrugated bridge of low residual stress for RF-MEMS switch,” Sensors and Actuators A: Physical, Vol.135, No.2, pp. 818-826, 2007.
  9. [9] M. Feldmann and S. Büttgenbach, “Linear Variable Reluctance (VR) micro motors with compensated attraction force concept, simulation, fabrication and test,” IEEE Trans. on Magnetics, Vol.43, No.6, pp. 2567-2569, 2007.
  10. [10] B. Wagner, M. Kreutzer, and W. Benecke, “Permanent magnet micromotors on silicon substrates,” J. of Microelectromechanical Systems, Vol.2, No.1, pp. 23-29, 1993.
  11. [11] M. V. Shutov, E. E. Sandoz, D. L. Howard, T. C. Hsia, R. L. Smith, and S. D. Collins, “A microfabricated electromagnetic linear synchronous motor,” Sensors and Actuators A: Physical, Vol.121, No.2, pp. 566-575, 2005.
  12. [12] C. G. J. Schabmueller, M. Koch, M. E. Mokhtari, A. G. R. Evans, A. Brunnschweiler, and H. Sehr, “Self-aligning gas/liquid micropump,” J. of Micromechanics and Microengineering, Vol.12, No.4, pp. 420-424, 2002.
  13. [13] M. F. M. Sabri, T. Ono, and M. Esashi, “Modeling and experimental validation of the performance of a silicon XY-microstage driven by PZT actuators,” J. of Micromechanics and Microengineering, Vol.19, No.9, 095004, 2009.
  14. [14] K. Matsuo, M. Moriyama, M. Esashi, and S. Tanaka, “Low-voltage PZT-actuated MEMS switch monolithically integrated with CMOS circuit,” Proc. of 2012 IEEE 25th Int. Conf. on Micro Electro Mechanical Systems (MEMS), pp. 1153-1156, 2012.
  15. [15] W. L. Benard, H. Kahn, A. H. Heuer, and M. A. Huff, “Thin-film shape-memory alloy actuated micropumps,” J. of Microelectromechanical Systems, Vol.7, No.2, pp. 245-251, 1998.
  16. [16] S. Braun, N. Sandström, G. Stemme, and W. van der Wijngaart, “Wafer-Scale manufacturing of bulk shape-memory-alloy microactuators based on adhesive bonding of titanium-nickel sheets to structured silicon wafers,” J. of Microelectromechanical Systems, Vol.18, No.6, pp. 1309-1317, 2009.
  17. [17] H. Nishio, H. Yamamoto, M. Nagakura, and M. Uehara, “Effects of machining on magnetic properties of Nd-Fe-B system sintered magnets,” IEEE Trans. on Magnetics, Vol.26, No.1, pp. 257-261, 1990.
  18. [18] T. Speliotis, D. Niarchos, P. Falaras, D. Tsoukleris, and J. Pepin, “Nd-Fe-B Thick Films Prepared by Screen Printing,” IEEE Trans. on Magnetics, Vol.41, No.10, pp. 3901-3903, 2005.
  19. [19] A. S. Lileev, A. A. Parilov, and V. G. Blatov, “Properties of hard magnetic Nd-Fe-B films versus different sputtering conditions,” J. of Magnetism and Magnetic Materials, Vol.242-245, No.2, pp. 1300-1303, 2002.
  20. [20] S. Parhofer, G. Gieresa, J. Weckera, and L. Schultz, “Growth characteristics and magnetic properties of sputtered Nd-Fe-B thin films,” J. of Magnetism and Magnetic Materials, Vol.163, No.1-2, pp. 32-38, 1996.
  21. [21] M. Nakano, R. Katoh, H. Fukunaga, S. Tutumi, and F. Yamashita, “A Fabrication of Nd-Fe-B thick-film magnets by high-speed PLD method,” IEEE Trans. on Magnetics, Vol.39, No.5, pp. 2863-2865, 2003.
  22. [22] N. Wang and D. P. Arnold, “Thick Electroplated Co-Rich Co-Pt Micromagnet Arrays for Magnetic MEMS,” IEEE Trans. on Magnetics, Vol.44, No.11, pp. 3969-3972, 2008.
  23. [23] M. Uehara, “Microstructure and permanent magnet properties of a perpendicular anisotropic NdFeB/Ta multilayered thin film prepared by magnetron sputtering,” J. of Magnetism and Magnetic Materials, Vol.284, pp. 281-286, 2004.
  24. [24] T. Shinshi, M. Ishibashi, and M. Uehara, “Micro linear motor utilizing NdFeB thin film magnet,” Proc. of the Japan Society for Precision Engineering 2011 Autumn Conf., pp. 655-656, 2011. (in Japanese)
  25. [25] R. Fujiwara, M. Ishibashi, T. Shinshi, M. Uehara, M. Hori, and E. Fujiwara, “A MEMS linear motor utilizing a thin film permanent magnet,” Trans. of the Japan Society of Mechanical Engineers, Series C, unpublished. (in Japanese)

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 23, 2024