Paper:
Bubble Elimination from Working Oil for Environmentally Friendly Hydraulic System Design
Yutaka Tanaka*, Sayako Sakama*, and Ryushi Suzuki**
*Hosei University, 2-17-1 Fujimi, Chiyodaku, Tokyo 102-8160, Japan
**Opus System Inc., 3-18-7 Asagayaminami, Suginamiku, Tokyo 166-0004, Japan
- [1] G. E. Totten and B. Sun, “Hydraulic Fluids: Foaming, Air Entrainment, and Air Release – A Review,” SAE Technical Paper No.972789, 1997.
- [2] W. Backe, and P. Lipphardt, “Influence of Dispersed Air on the Pressure Medium,” Proc. IMechE., C97/76, pp. 77-84, 1976.
- [3] I. von Linsingen and V. J. De Negri, “Handbook of Hydraulic Fluid Technology, 2nd Edition, Chapter 1 – Fundamentals of Hydraulic Systems and Components –,” CRC Press, p. 48, 2011.
- [4] R. Suzuki and S. Yokota, “Bubble Elimination by Use of Swirl Flow,” IFAC Int. Workshop on Trends in Hydraulic and Pneumatic Components and Systems, Poster Paper 2., 1994.
- [5] R. Suzuki, Y. Tanaka, and S. Yokota, “Reduction of Oil Temperature Rise by Use of a Bubble Elimination Device in Hydraulic Systems,” J. Society of Tribologists and Lubrication Engineers, 54-3, pp. 23-27, 1998.
- [6] R. Suzuki, Y. Tanaka, K. Arai, and S. Yokota, “Bubble Elimination in Oil for Fluid Power Systems,” SAE Trans., J. of Commercial Vehicles, Section 2, 107, pp. 381-386, 1998.
- [7] Y. Tanaka, R. Suzuki, K. Arai, K. Iwamoto, and K. Kawazura, “Visualization of Flow Fields in a Bubble Eliminator,” J. Visualization, Vol.4, No.1, pp. 81-90, 2001.
- [8] S. Ohkawa, A. Konishi, H. Hatano, and D. Voss, “Piston Pump Failures In Various Type Hydraulic Fluids,” Hydraulic Failure Analysis: Fluids, Components, and System Effects ASTM STP 1339, G. Totten (Ed.), American Society for Testing and Materials, West Conshohocken, PA, 2001.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.